1
|
Gallo T, Adriano L, Heymann M, Wrona A, Walsh N, Öhrwall G, Callefo F, Skruszewicz S, Namboodiri M, Marinho R, Schulz J, Valerio J. Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1285-1292. [PMID: 39172090 PMCID: PMC11371042 DOI: 10.1107/s1600577524006611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024]
Abstract
One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface. In this study, we propose a novel 3D-printed nozzle design by introducing microscopic flat sheet jets that provide micrometre-thick liquid sheets with high stability, intending to make this technology more widely available to users. Our research is a collaboration between the EuXFEL and MAX IV research facilities. This collaboration aims to develop and refine a 3D-printed flat sheet nozzle design and a versatile jetting platform that is compatible with multiple endstations and measurement techniques. Our flat sheet jet platform improves the stability of the jet and increases its surface area, enabling more precise scanning and differential measurements in X-ray absorption, scattering, and imaging applications. Here, we demonstrate the performance of this new arrangement for a flat sheet jet setup with X-ray photoelectron spectroscopy, photoelectron angular distribution, and soft X-ray absorption spectroscopy experiments performed at the photoemission endstation of the FlexPES beamline at MAX IV Laboratory in Lund, Sweden.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory, LNLSBrazilian Center for Research in Energy and Materials (CPNEM)Brazil
| | | | | | - Ricardo Marinho
- Institute of Physics, Brasilia University (UnB), 70.919-970Brasília, Brazil
- Institute of Physics Federal University of Bahia40.170-115SalvadorBrazil
| | | | | |
Collapse
|
2
|
Gallo T, Michailoudi G, Valerio J, Adriano L, Heymann M, Schulz J, Marinho RDR, Callefo F, Walsh N, Öhrwall G. Aqueous Ammonium Nitrate Investigated Using Photoelectron Spectroscopy of Cylindrical and Flat Liquid Jets. J Phys Chem B 2024; 128:6866-6875. [PMID: 38976651 PMCID: PMC11264267 DOI: 10.1021/acs.jpcb.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Ammonium nitrate in aqueous solution was investigated with synchrotron radiation based photoelectron spectroscopy using two types of liquid jet nozzles. Electron emission from a cylindrical microjet of aqueous ammonium nitrate solution was measured at two different angles relative to the horizontal polarization of the incident synchrotron radiation, 90° and 54.7° (the "magic angle"), for a range of photon energies (470-530 eV). We obtained β parameter values as a function of photon energy, based on a normalization procedure relying on simulations of background intensity with the SESSA (Simulation of Electron Spectra for Surface Analysis) package. The β values are similar to literature data for O 1s ionization of liquid water, and the β value of N 1s from NH4+ is higher than that for NO3-, by ≈0.1. The measurements also show that the photoelectron signal from NO3- exhibits a photon energy dependent cross section variation not observed in NH4+. Additional measurements using a flat jet nozzle found that the ammonium and nitrate peak area ratio was unaffected by changes in the takeoff angle, indicating a similar distribution of both ammonium and nitrate in the surface region.
Collapse
Affiliation(s)
- Tamires Gallo
- Synchrotron
Radiation Research, Lund University, Box 118, SE-22100 Lund, Sweden
- MAX
IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Georgia Michailoudi
- Nano
and Molecular Systems Research Unit, University
of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Joana Valerio
- European
XFEL, Holzkoppel 4, Schenefeld 22869, Germany
| | - Luigi Adriano
- European
XFEL, Holzkoppel 4, Schenefeld 22869, Germany
| | - Michael Heymann
- IBBS,
Institut für Biomaterialien und Biomolekulare Systeme, Universität
Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | - Ricardo dos Reis
Teixeira Marinho
- Institute
of Physics, Brasilia University (UnB), 70.919-970 Brasiliá, Brazil
- Institute
of Physics, Federal University of Bahia, 40.170-115 Salvador, BA, Brazil
| | - Flavia Callefo
- Brazilian
Synchrotron Light Laboratory, LNLS, Brazilian
Center for Research in Energy and Materials, CNPEM, CP 6192, 13085-970 Campinas, SP, Brazil
| | - Noelle Walsh
- MAX
IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Gunnar Öhrwall
- MAX
IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| |
Collapse
|
3
|
Graham TR, Wei Y, Walter ED, Nienhuis ET, Chun J, Schenter GK, Rosso KM, Pearce CI, Clark AE. Tracking nitrite's deviation from Stokes-Einstein predictions with pulsed field gradient 15N NMR spectroscopy. Chem Commun (Camb) 2023; 59:14407-14410. [PMID: 37975198 DOI: 10.1039/d3cc04168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Predicting the behavior of oxyanions in radioactive waste stored at the Department of Energy legacy nuclear sites requires the development of novel analytical methods. This work demonstrates 15N pulsed field gradient nuclear magnetic resonance spectroscopy to quantify the diffusivity of nitrite. Experimental results, supported by molecular dynamics simulations, indicate that the diffusivity of free hydrated nitrite exceeds that of free hydrated sodium despite the greater hydrodynamic radius of nitrite. Investigations are underway to understand how the compositional and dynamical heterogeneities of the ion networks at high concentrations affect rheological and transport properties.
Collapse
Affiliation(s)
- Trent R Graham
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Yihui Wei
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Eric D Walter
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Emily T Nienhuis
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Jaehun Chun
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | | | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Aurora E Clark
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
4
|
Wang Y, Wang G, Bowron DT, Zhu F, Hannon AC, Zhou Y, Liu X, Shi G. Unveiling the structure of aqueous magnesium nitrate solutions by combining X-ray diffraction and theoretical calculations. Phys Chem Chem Phys 2022; 24:22939-22949. [PMID: 36125259 DOI: 10.1039/d2cp01828d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of aqueous magnesium nitrate solution is gaining significant interest among researchers, especially whether contact ion pairs exist in concentrated solutions. Here, combining X-ray diffraction experiments, quantum chemical calculations and ab initio molecular dynamics simulations, we report that the [Mg(NO3)2] molecular structure in solution from the coexistence of a free [Mg(H2O)6]2+ octahedral supramolecular structure with a free [NO3(H2O)n]- (n = 11-13) supramolecular structure to an [Mg2+(H2O)n(NO3-)m] (n = 3, 4, 5; m = 3, 2, 1) associated structure with increasing concentration. Interestingly, two hydration modes of NO3--the nearest neighbor hydration with a hydration distance less than 3.9 Å and the next nearest neighbor hydration with hydration distance ranging from 3.9 to 4.3 Å-were distinguished. With an increase in the solution concentration, the hydrated NO3- ions lost outer layer water molecules, and the hexagonal octahedral hydration structure of [Mg(H2O)62+] was destroyed, resulting in direct contact between Mg2+ and NO3- ions in a monodentate way. As the concentration of the solution further increased, NO3- ions replaced water molecules in the hydration layer of Mg2+ to form three-ion clusters and even more complex chains or linear ion clusters.
Collapse
Affiliation(s)
- Yunxia Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangguo Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel T Bowron
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.
| | - Fayan Zhu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.
| | - Alex C Hannon
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Guosheng Shi
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
5
|
Majidi S, Erfan-Niya H, Azamat J, Cruz-Chú ER, Honoré Walther J. The performance of a C2N membrane for heavy metal ions removal from water under external electric field. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Wang Y, Song L, Wang G, Liu H, Jing Z, Zhou Y, Zhu F, Zhang Y. Structure analysis of aqueous Mg(NO 3) 2 solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120478. [PMID: 34653851 DOI: 10.1016/j.saa.2021.120478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
An increasing amount of research has investigated whether direct contact ion pairs (CIP) exist in magnesium nitrate solutions. In this work, the relationship between the concentration and microstructure, as well as the details of the ion pair structure in magnesium nitrate solutions were studied by Raman spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations. Component analysis showed that solvent-shared ion pairs (SIPs) and free hydrated ions were the dominant species in dilute solution. SIPs gradually transformed into contact ion pairs as the concentration increased. Complex structures and CIPs were the main species when WSR < 10, and as the concentration further increased, the CIP content gradually decreased, while the number of complex structures gradually increased. MD simulations and DFT calculations provide a new understanding of the structural units of ion pairs in magnesium nitrate solutions. The SIPs and CIPs were mainly composed of cationic triple ion clusters with two magnesium ions and one nitrate ion. The nitrate ion mainly existed as monodentate ligand to form a CIP with the magnesium ion. As the solution concentration increased, triple ion clusters gradually transformed into more complex chain structures. The structural complexity of magnesium nitrate solutions deserves further attention.
Collapse
Affiliation(s)
- Yunxia Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Song
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangguo Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China
| | - Zhuanfang Jing
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China
| | - Fayan Zhu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China.
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Science, and School of Aerospace Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Weeraratna C, Kostko O, Ahmed M. An investigation of aqueous ammonium nitrate aerosols with soft X-ray spectroscopy. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1983058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
8
|
Kumar N, Servis MJ, Clark AE. Uranyl Speciation in the Presence of Specific Ion Gradients at the Electrolyte/Organic Interface. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1954323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Michael J. Servis
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington, USA
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
9
|
Uribe L, Gómez S, Giovannini T, Egidi F, Restrepo A. An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO 2. Phys Chem Chem Phys 2021; 23:14857-14872. [PMID: 34223573 DOI: 10.1039/d1cp00652e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate calculation of absorption spectra of aqueous NO2- requires rigorously sampling the quantum potential energy surfaces for microsolvation of NO2- with at least five explicit water molecules and embedding the resulting clusters in a continuum solvent accounting for the statistical weighted contributions of individual isomers. This method, which we address as ASCEC + PCM, introduces several desired features when compared against MD simulations derived QM/MM spectra: comparatively fewer explicit solvent molecules to be treated with expensive QM methods, the identification of equilibrium structures in the quantum PES to be used in further vibrational spectroscopy, and the unequivocal identification of cluster orbitals undergoing electronic transitions and charge transfer that originate the spectral bands.
Collapse
Affiliation(s)
- Lina Uribe
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Franco Egidi
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
10
|
Yadav S, Chandra A. Solvation Shell of the Nitrite Ion in Water: An Ab Initio Molecular Dynamics Study. J Phys Chem B 2020; 124:7194-7204. [PMID: 32706258 DOI: 10.1021/acs.jpcb.0c02221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed ab initio molecular dynamics simulation of a nitrite ion in water to investigate the structural and dynamical properties of its hydration shell. The nitrite ion is found to exhibit strong asymmetry toward hydrogen bonding due to its two different types of hydrogen bond acceptor sites. This difference is better captured through further partitioning of the hydration shell into its proximal and distal regions. The frequency shifts of the stretch modes of hydration shell water reveal that the nitrogen site forms a stronger hydrogen bond than its oxygen sites with the latter forming hydrogen bonds, which are similar in strength to that between a pair of water molecules. The escape dynamics of water from the hydration shell is found to be rather slow, which seems to classify the nitrite ion as a structure-maker. However, the dynamics of orientational and hydrogen bond relaxation reveal a faster mobility of water molecules in the hydration shell than bulk water in spite of strong ion-water interactions. It is found that the nitrite ion can hold water molecules in its solvation shell and still make them rotate fast in its vicinity through switching of their hydrogen bonds between its nitrogen and oxygen acceptor sites. The dipole moment of the solute in water is also calculated in the present study.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
11
|
Yadav S, Chandra A. Transport of hydrated nitrate and nitrite ions through graphene nanopores in aqueous medium. J Comput Chem 2020; 41:1850-1858. [PMID: 32500955 DOI: 10.1002/jcc.26356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Abstract
Nitrate ( NO 3 - ) and nitrite ( NO 2 - ) ions are naturally occurring inorganic ions that are part of the nitrogen cycle. High doses of these ions in drinking water impose a potential risk to public health. In this work, molecular dynamics simulations are carried out to study the passage of nitrate and nitrite ions from water through graphene nanosheets (GNS) with hydrogen-functionalized narrow pores in presence of an external electric field. The passage of ions through the pores is investigated through calculations of ion flux, and the results are analyzed through calculations of various structural and thermodynamic properties such as the density of ions and water, ion-water radial distribution functions, two-dimensional density distribution functions, and the potentials of mean force of the ions. Current simulations show that the nitrite ions can pass more in numbers than the nitrate ions in a given time through GNS hydrogen-functionalized pore of different geometry. It is found that the nitrite ions can permeate faster than the nitrate ions despite the former having higher hydration energy in the bulk. This can be explained in terms of the competition between the number density of the ions along the pore axis and the free energy barrier calculated from the potential of mean force. Also, an externally applied electric field is found to be important for faster permeation of the nitrite over the nitrate ions. The current study suggests that graphene nanosheets with carefully created pores can be effective in achieving selective passage of ions from aqueous solutions.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
12
|
Mizuno H, Oosterbaan KJ, Menzl G, Smith J, Rizzuto AM, Geissler PL, Head-Gordon M, Saykally RJ. Revisiting the π → π* transition of the nitrite ion at the air/water interface: A combined experimental and theoretical study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sharma B, Chandra A. Dynamics of Water in the Solvation Shell of an Iodate Ion: A Born-Oppenheimer Molecular Dynamics Study. J Phys Chem B 2020; 124:2618-2631. [PMID: 32150681 DOI: 10.1021/acs.jpcb.9b12008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The iodate ion has an anisotropic structure and charge distribution. It has a pyramidal shape with the iodine atom located at the peak of the pyramid. The water molecules interact differently with the positively charged iodine and the negatively charged oxygen atoms of this anion, giving rise to two distinct solvation shells. In the present study, we have performed ab initio Born-Oppenheimer molecular dynamics simulations to investigate the dynamics of water molecules in the iodine and oxygen solvation shells of the iodate ion and compared the behavior with those of the bulk. The dynamics of water is calculated for both the BLYP and the dispersion-corrected BLYP-D3 functionals at room temperature. The dynamics of water in the solvation shells at higher temperatures of 353 and 330 K has also been investigated for the BLYP and BLYP-D3 functionals, respectively. The hydrogen bond dynamics, vibrational spectral diffusion, orientational and translational diffusion, and residence dynamics of water molecules in the two solvation shells are looked at in the current study. The ion-water hydrogen bond dynamics is found to be somewhat faster than that for water-water hydrogen bonds in the bulk, which can be attributed to a ring-like electron distribution on the iodate oxygens. The dynamical trends are connected to the water structure making/breaking properties of the positively charged iodine and negatively charged oxygen sites of the anion. Furthermore, orientational jumps of the iodate ion and also those of surrounding water molecules which are hydrogen bonded to the oxygen atoms of the iodate ion are also investigated. It is found that the nature of these orientational jumps can be different from those reported earlier for planar polyoxyanions such as the nitrate ion.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| |
Collapse
|
14
|
Dembowski M, Snyder MM, Delegard CH, Reynolds JG, Graham TR, Wang HW, Leavy II, Baum SR, Qafoku O, Fountain MS, Rosso KM, Clark SB, Pearce CI. Ion-ion interactions enhance aluminum solubility in alkaline suspensions of nano-gibbsite (α-Al(OH) 3) with sodium nitrite/nitrate. Phys Chem Chem Phys 2020; 22:4368-4378. [PMID: 31850442 DOI: 10.1039/c9cp05856g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite widespread industrial importance, predicting metal solubilities in highly concentrated, multicomponent aqueous solutions is difficult due to poorly understood ion-ion and ion-solvent interactions. Aluminum hydroxide solid phase solubility in concentrated sodium hydroxide (NaOH) solutions is one such case, with major implications for ore refining, as well as processing of radioactive waste stored at U.S. Department of Energy legacy sites, such as the Hanford Site, Washington State. The solubility of gibbsite (α-Al(OH)3) is often not well predicted because other ions affect the activity of hydroxide (OH-) and aluminate (Al(OH)4-) anions. In the present study, we systematically examined the influence of key anions, nitrite (NO2-) and nitrate (NO3-), as sodium salts on the solubility of α-Al(OH)3 in NaOH solutions taking care to establish equilibrium from both under- and oversaturation. Rapid equilibration was enabled by use of a highly pure and crystalline synthetic nano-gibbsite of well-defined particle size and shape. Measured dissolved aluminum concentrations were compared with those predicted by an α-Al(OH)3 solubility model derived for simple Al(OH)4-/OH- systems. Specific anion effects were expressed as an enhancement factor (Alenhc) conveying the excess of dissolved aluminum. At 45 °C, NaNO2 and NaNO3-containing systems exhibited Alenhc values of 2.70 and 1.88, respectively, indicating significant enhancement. The solutions were examined by Raman and high-field 27Al NMR spectroscopy, indicating specific interactions including Al(OH)4--Na+ contact ion pairing and Al(OH)4--NO2-/NO3- ion-ion interactions. Dynamic evolution of the α-Al(OH)3 particles including growth and agglomeration was observed revealing the importance of dissolution/reprecipitation in establishing equilibrium. These studies indicate that incomplete ion hydration, as a result of the low water activity in these concentrated electrolytes, results in: (i) enhanced reactivity of the hydroxide ion with respect to α-Al(OH)3; (ii) increased concentrations of Al(OH)4- in solution; and (iii) stronger ion-ion interactions that act to stabilize the supersaturated solutions. This information on the mechanisms by which α-Al(OH)3 becomes supersaturated is essential for more energy-efficient aluminum processing technologies, including the treatment of millions of gallons of Al(OH)4--rich high-level radioactive waste.
Collapse
Affiliation(s)
- Mateusz Dembowski
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wenzel O, Rein V, Popescu R, Feldmann C, Gerthsen D. Structural Properties and ELNES of Polycrystalline and Nanoporous Mg 3N 2. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:102-111. [PMID: 31918774 DOI: 10.1017/s1431927619015307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoporous, high-purity magnesium nitride (Mg3N2) was synthesized with a liquid ammonia-based process, for potential applications in optoelectronics, gas separation and catalysis, since these applications require high material purity and crystallinity, which has seldom been demonstrated in the past. One way to evaluate the degree of crystalline near-range order and atomic environment is electron energy-loss spectroscopy (EELS) in a transmission electron microscope. However, there are hardly any data on Mg3N2, which makes identification of electron energy-loss near-edge structure (ELNES) features difficult. Therefore, we have studied nanoporous Mg3N2 with EELS in detail in comparison to EELS spectra of bulk Mg3N2, which was analyzed as a reference material. The N-K and Mg-K edges of both materials are similar. Despite having the same crystal structure, however, there are differences in fine-structural features, such as shifts and absences of peaks in the N-K and Mg-K edges of nanoporous Mg3N2. These differences in ELNES are attributed to coordination changes in nanoporous Mg3N2 caused by the significantly smaller crystallite size of 2-6 nm compared to the larger (25-125 nm) crystal size in a bulk material.
Collapse
Affiliation(s)
- Olivia Wenzel
- Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131Karlsruhe, Germany
| | - Viktor Rein
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131Karlsruhe, Germany
| | - Claus Feldmann
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131Karlsruhe, Germany
| |
Collapse
|
16
|
Cordeiro RM, Yusupov M, Razzokov J, Bogaerts A. Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences. J Phys Chem B 2020; 124:1082-1089. [DOI: 10.1021/acs.jpcb.9b08172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rodrigo M. Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André (SP), Brazil
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
17
|
Singh J, Chae KH. Local Electronic Structure Perspectives of Nanoparticle Growth: The Case of MgO. ACS OMEGA 2019; 4:7140-7150. [PMID: 31459823 PMCID: PMC6649258 DOI: 10.1021/acsomega.9b00262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 06/10/2023]
Abstract
Herein, we reported nanoparticle growth from the point of view of the local electronic structure by taking MgO as a prototype material. These nanoparticles were obtained from the sol-gel autocombustion process. The precursor formed in this process was annealed for various temperatures ranging from 300 to 1200 °C for 0.5 and 1 h. It was observed that the amorphous phase occurred in the material synthesized at an annealing temperature of 300 °C for 1 h. This phase transformed to crystalline when the annealing temperature was increased to 350 °C. Crystallite size increased with annealing temperature; however, annealing time did not influence the crystallite size. To get deeper insights of modifications occurring at the atomic scale during crystallization growth, the local electronic structure of synthesized materials was investigated by measuring near-edge X-ray absorption fine structure at Mg, O, N, and C K-edges. These results envisaged that Mg2+ ion coordination improved with the increase of annealing temperature. It was also observed that both annealing time and annealing temperature are sensitive to the local electronic structural changes.
Collapse
Affiliation(s)
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea
Institute of Science and Technology, Seoul 02792, Republic
of Korea
| |
Collapse
|
18
|
Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking MJJ, Elsaesser T, Nibbering ETJ, Rouzée A. Soft X-ray Absorption Spectroscopy of Aqueous Solutions Using a Table-Top Femtosecond Soft X-ray Source. J Phys Chem Lett 2019; 10:52-58. [PMID: 30547598 DOI: 10.1021/acs.jpclett.8b03420] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We demonstrate the feasibility of soft X-ray absorption spectroscopy in the water window using a table-top laser-based approach with organic molecules and inorganic salts in aqueous solution. A high-order harmonic source delivers femtosecond pulses of short wavelength radiation in the photon energy range from 220 to 450 eV. We report static soft X-ray absorption measurements in transmission on the solvated compounds O=C(NH2)2, CaCl2, and NaNO3 using flatjet technology. We monitor the absorption of the molecular samples between the carbon (∼280 eV) and nitrogen (∼400 eV) K-edges and compare our results with previous measurements performed at the BESSYII facility. We discuss the roles of pulse stability and photon flux in the outcome of our experiments. Our work paves the way toward table-top femtosecond, solution-phase soft X-ray absorption spectroscopy in the water window.
Collapse
Affiliation(s)
- Carlo Kleine
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Maria Ekimova
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Gildas Goldsztejn
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Sebastian Raabe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Christian Strüber
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Jan Ludwig
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Suresh Yarlagadda
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Stefan Eisebitt
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Marc J J Vrakking
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Erik T J Nibbering
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| |
Collapse
|
19
|
Sharma B, Chandra A. Nature of hydration shells of a polyoxy-anion with a large cationic centre: The case of iodate ion in water. J Comput Chem 2018; 39:1226-1235. [DOI: 10.1002/jcc.25185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur Uttar Pradesh 208016 India
| | - Amalendu Chandra
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
20
|
Smith JW, Saykally RJ. Soft X-ray Absorption Spectroscopy of Liquids and Solutions. Chem Rev 2017; 117:13909-13934. [DOI: 10.1021/acs.chemrev.7b00213] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jacob W. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Jiao Y, Adams BW, Dohn AO, Møller KB, Jónsson H, Rose-Petruck C. Ultrafast X-ray absorption study of longitudinal-transverse phonon coupling in electrolyte aqueous solution. Phys Chem Chem Phys 2017; 19:27266-27274. [PMID: 28990021 DOI: 10.1039/c7cp02978k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast X-ray absorption spectroscopy is applied to study the conversion of longitudinal to transverse phonons in aqueous solution. Permanganate solutes serve as X-ray probe molecules that permit the measurement of the conversion of 13.5 GHz, longitudinal phonons to 27 GHz, transverse phonons that propagate with high-frequency sound speed. The experimental results, combined with QM/MM MD simulations, show that the hydrogen bond network around the charged solutes has a glass-like stiffness that persists for at least tens of picoseconds.
Collapse
Affiliation(s)
- Yishuo Jiao
- Department of Chemistry, Brown University, 324 Brook St., Box H, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pham TA, Govoni M, Seidel R, Bradforth SE, Schwegler E, Galli G. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments. SCIENCE ADVANCES 2017; 3:e1603210. [PMID: 28691091 PMCID: PMC5482551 DOI: 10.1126/sciadv.1603210] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/28/2017] [Indexed: 05/31/2023]
Abstract
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
Collapse
Affiliation(s)
- Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Marco Govoni
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Seidel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482, USA
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482, USA
| | - Eric Schwegler
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Giulia Galli
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
23
|
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids. Sci Rep 2017; 7:43514. [PMID: 28256635 PMCID: PMC5335258 DOI: 10.1038/srep43514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell.
Collapse
|
24
|
Hans A, Ozga C, Seidel R, Schmidt P, Ueltzhöffer T, Holzapfel X, Wenzel P, Reiß P, Pohl MN, Unger I, Aziz EF, Ehresmann A, Slavíček P, Winter B, Knie A. Optical Fluorescence Detected from X-ray Irradiated Liquid Water. J Phys Chem B 2017; 121:2326-2330. [DOI: 10.1021/acs.jpcb.7b00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Hans
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Christian Ozga
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Philipp Schmidt
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Timo Ueltzhöffer
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Xaver Holzapfel
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Philip Wenzel
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Philipp Reiß
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Marvin N. Pohl
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Isaak Unger
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Emad F. Aziz
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
- School
of Chemistry, Monash University, Clayton Campus, Victoria 3800, Australia
| | - Arno Ehresmann
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Bernd Winter
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - André Knie
- University of Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany
| |
Collapse
|
25
|
Jiao Y, Adams B, Rose-Petruck C. Ultrafast X-ray measurements of the glass-like, high-frequency stiffness of aqueous solutions. Phys Chem Chem Phys 2017; 19:21095-21100. [DOI: 10.1039/c7cp02747h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast dynamics of the domains surrounding solutes in aqueous solution were measured using laser-generating GHz phonons in 30 mM ferrocyanide solutions and the resulting molecular motions of the solutes and their hydrogen-bonded solvation shells were detected using ultrafast X-ray absorption spectroscopy (UXAS).
Collapse
Affiliation(s)
- Yishuo Jiao
- Department of Chemistry
- Brown University
- Providence
- USA
| | | | | |
Collapse
|
26
|
Fransson T, Harada Y, Kosugi N, Besley NA, Winter B, Rehr JJ, Pettersson LGM, Nilsson A. X-ray and Electron Spectroscopy of Water. Chem Rev 2016; 116:7551-69. [PMID: 27244473 DOI: 10.1021/acs.chemrev.5b00672] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here we present an overview of recent developments of X-ray and electron spectroscopy to probe water at different temperatures. Photon-induced ionization followed by detection of electrons from either the O 1s level or the valence band is the basis of photoelectron spectroscopy. Excitation between the O 1s and the unoccupied states or occupied states is utilized in X-ray absorption and X-ray emission spectroscopies. These techniques probe the electronic structure of the liquid phase and show sensitivity to the local hydrogen-bonding structure. Both experimental aspects related to the measurements and theoretical simulations to assist in the interpretation are discussed in detail. Different model systems are presented such as the different bulk phases of ice and various adsorbed monolayer structures on metal surfaces.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, Chemistry and Biology, Linköping University , S-581 83 Linköping, Sweden
| | - Yoshihisa Harada
- Institute for Solid State Physics (ISSP), The University of Tokyo , Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Nobuhiro Kosugi
- Institute for Molecular Science , Myodaiji, Okazaki 444-8585, Japan
| | - Nicholas A Besley
- Department of Physical and Theoretical Chemistry, School of Chemistry, The University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Bernd Winter
- Institute of Methods for Material Development, Helmholtz Center Berlin , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - John J Rehr
- Department of Physics, University of Washington , Seattle, Washington 98195, United States
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University , S-106 91 Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz MM, Werner J, Bluhm H. Water at Interfaces. Chem Rev 2016; 116:7698-726. [PMID: 27232062 DOI: 10.1021/acs.chemrev.6b00045] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Collapse
Affiliation(s)
- Olle Björneholm
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Martin H Hansen
- Technical University of Denmark , 2800 Kongens Lyngby, Denmark.,Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andrew Hodgson
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Li-Min Liu
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Beijing Computational Science Research Center , Beijing, 100193, China
| | - David T Limmer
- Princeton Center for Theoretical Science, Princeton University , Princeton, New Jersey 08544, United States
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Philipp Pedevilla
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Huaze Shen
- International Center for Quantum Materials and School of Physics, Peking University , Beijing 100871, China
| | - Gabriele Tocci
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Laboratory for fundamental BioPhotonics, Laboratory of Computational Science and Modeling, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Marie-Madeleine Walz
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Josephina Werner
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences , Box 7015, 750 07 Uppsala, Sweden
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
28
|
Lam RK, Smith JW, Saykally RJ. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy. J Chem Phys 2016; 144:191103. [DOI: 10.1063/1.4951010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Royce K. Lam
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jacob W. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|