1
|
Xu H, Gao Q, Li L, Su T, Ming D. How alginate lyase produces quasi-monodisperse oligosaccharides: A normal-mode-based docking and molecular dynamics simulation study. Carbohydr Res 2024; 536:109022. [PMID: 38242069 DOI: 10.1016/j.carres.2024.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Oligosaccharide degradation products of alginate (AOS) hold significant potential in diverse fields, including pharmaceuticals, health foods, textiles, and agricultural production. Enzymatic alginate degradation is appealing due to its mild conditions, predictable activity, high yields, and controllability. However, the alginate degradation often results in a complex mixture of oligosaccharides, necessitating costly purification to isolate highly active oligosaccharides with a specific degree of polymerization (DP). Addressing this, our study centers on the alginate lyase AlyB from Vibrio Splendidus OU02, which uniquely breaks down alginate into mono-distributed trisaccharides. This enzyme features a polysaccharide lyase family 7 domain (PL-7) and a CBM32 carbohydrate-binding module connected by a helical structure. Through normal-mode-based docking and all-atom molecular simulations, we demonstrate that AlyB's substrate and product specificities are influenced by the spatial conformation of the catalytic pocket and the flexibility of its structure. The helically attached CBM is pivotal in releasing trisaccharides, which is crucial for avoiding further degradation. This study sheds light on AlyB's specificity and efficiency and contributes to the evolving field of enzyme design for producing targeted oligosaccharides, with significant implications for various bioindustries.
Collapse
Affiliation(s)
- Hengyue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China; Now Studying in the State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Qi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Lu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Ting Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China.
| |
Collapse
|
2
|
Zhang Y, Zhang S, Xing J, Bahar I. Normal mode analysis of membrane protein dynamics using the vibrational subsystem analysis. J Chem Phys 2021; 154:195102. [PMID: 34240914 PMCID: PMC8131107 DOI: 10.1063/5.0046710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
The vibrational subsystem analysis is a useful approach that allows for evaluating the spectrum of modes of a given system by integrating out the degrees of freedom accessible to the environment. The approach could be utilized for exploring the collective dynamics of a membrane protein (system) coupled to the lipid bilayer (environment). However, the application to membrane proteins is limited due to high computational costs of modeling a sufficiently large membrane environment unbiased by end effects, which drastically increases the size of the investigated system. We derived a recursive formula for calculating the reduced Hessian of a membrane protein embedded in a lipid bilayer by decomposing the membrane into concentric cylindrical domains with the protein located at the center. The approach allows for the design of a time- and memory-efficient algorithm and a mathematical understanding of the convergence of the reduced Hessian with respect to increasing membrane sizes. The application to the archaeal aspartate transporter GltPh illustrates its utility and efficiency in capturing the transporter's elevator-like movement during its transition between outward-facing and inward-facing states.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Bldg., 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - She Zhang
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Bldg., 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, USA
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Bldg., 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|