1
|
Kathmann SM. Electric fields and potentials in condensed phases. Phys Chem Chem Phys 2021; 23:23836-23849. [PMID: 34647950 DOI: 10.1039/d1cp03571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electric fields and potentials inside and at the interface of matter are relevant to many branches of physics, chemistry, and biology. Accurate quantification of these fields and/or potentials is essential to control and exploit chemical and physical transformations. Before we understand the response of matter to external fields, it is first important to understand the intrinsic interior and interfacial fields and potentials, both classically and quantum mechanically, as well as how they are probed experimentally. Here we compare and contrast, beginning with the hydrogen atom in vacuum and ending with concentrated aqueous NaCl electrolyte, both classical and quantum mechanical electric potentials and fields. We make contact with experimental vibrational Stark, electrochemical, X-ray, and electron spectroscopic probes of these potentials and fields, outline relevant conceptual difficulties, and underscore the advantage of electron holography as a basis to better understand electrostatics in matter.
Collapse
Affiliation(s)
- Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
2
|
Yang N, Khuu T, Mitra S, Duong CH, Johnson MA, DiRisio RJ, McCoy AB, Miliordos E, Xantheas SS. Isolating the Contributions of Specific Network Sites to the Diffuse Vibrational Spectrum of Interfacial Water with Isotopomer-Selective Spectroscopy of Cold Clusters. J Phys Chem A 2020; 124:10393-10406. [PMID: 33270448 DOI: 10.1021/acs.jpca.0c07795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Decoding the structural information contained in the interfacial vibrational spectrum of water requires understanding how the spectral signatures of individual water molecules respond to their local hydrogen bonding environments. In this study, we isolated the contributions for the five classes of sites that differ according to the number of donor (D) and acceptor (A) hydrogen bonds that characterize each site. These patterns were measured by exploiting the unique properties of the water cluster cage structures formed in the gas phase upon hydration of a series of cations M+·(H2O)n (M = Li, Na, Cs, NH4, CH3NH3, H3O, and n = 5, 20-22). This selection of ions was chosen to systematically express the A, AD, AAD, ADD, and AADD hydrogen bonding motifs. The spectral signatures of each site were measured using two-color, IR-IR isotopomer-selective photofragmentation vibrational spectroscopy of the cryogenically cooled, mass selected cluster ions in which a single intact H2O is introduced without isotopic scrambling, an important advantage afforded by the cluster regime. The resulting patterns provide an unprecedented picture of the intrinsic line shapes and spectral complexities associated with excitation of the individual OH groups, as well as the correlation between the frequencies of the two OH groups on the same water molecule, as a function of network site. The properties of the surrounding water network that govern this frequency map are evaluated by dissecting electronic structure calculations that explore how changes in the nearby network structures, both within and beyond the first hydration shell, affect the local frequency of an OH oscillator. The qualitative trends are recovered with a simple model that correlates the OH frequency with the network-modulated local electron density in the center of the OH bond.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Sayoni Mitra
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Chinh H Duong
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Ryan J DiRisio
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Evangelos Miliordos
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage. Proc Natl Acad Sci U S A 2020; 117:26047-26052. [PMID: 33024015 DOI: 10.1073/pnas.2017150117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled ion trap. The measurements are carried out by applying two-color, infrared-infrared photodissociation mass spectrometry to the D3O+·(HDO)(D2O)19 isotopologue of the "magic number" protonated water cluster, H+·(H2O)21 The OH group can occupy any one of the five spectroscopically distinct sites in the distorted pentagonal dodecahedron cage structure. The OH frequency is observed to evolve over tens of milliseconds in the temperature range (90 to 120 K). Starting at 100 K, large "jumps" are observed between two OH frequencies separated by ∼300 cm-1, indicating migration of the OH group from the bound OH site at 3,350 cm-1 to the free position at 3,686 cm-1 Increasing the temperature to 110 K leads to partial interconversion among many sites. All sites are observed to interconvert at 120 K such that the distribution of the unique OH group among them adopts the form one would expect for a canonical ensemble. The spectral dynamics displayed by the clusters thus offer an unprecedented view into the molecular-level processes that drive spectral diffusion in an extended network of water molecules.
Collapse
|
4
|
Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks. Nat Chem 2019; 12:159-164. [PMID: 31767995 DOI: 10.1038/s41557-019-0376-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/11/2019] [Indexed: 02/01/2023]
Abstract
The extremely broad infrared spectrum of water in the OH stretching region is a manifestation of how profoundly a water molecule is distorted when embedded in its extended hydrogen-bonding network. Many effects contribute to this breadth in solution at room temperature, which raises the question as to what the spectrum of a single OH oscillator would be in the absence of thermal fluctuations and coupling to nearby OH groups. We report the intrinsic spectral responses of isolated OH oscillators embedded in two cold (~20 K), hydrogen-bonded water cages adopted by the Cs+·(HDO)(D2O)19 and D3O+·(HDO)(D2O)19 clusters. Most OH oscillators yield single, isolated features that occur with linewidths that increase approximately linearly with their redshifts. Oscillators near 3,400 cm-1, however, occur with a second feature, which indicates that OH stretch excitation of these molecules drives low-frequency, phonon-type motions of the cage. The excited state lifetimes inferred from the broadening are considered in the context of fluctuations in the local electric fields that are available even at low temperature.
Collapse
|
5
|
Reese DL, Steele RP. Nuclear Motion in the Intramolecular Dihydrogen-Bound Regime of an Aminoborane Complex. J Phys Chem A 2019; 123:6547-6563. [DOI: 10.1021/acs.jpca.9b05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Diana L. Reese
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Ishiuchi SI, Wako H, Xantheas SS, Fujii M. Probing the selectivity of Li + and Na + cations on noradrenaline at the molecular level. Faraday Discuss 2019; 217:396-413. [PMID: 31115392 DOI: 10.1039/c8fd00186c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although several mechanisms concerning the biological function of lithium salts, drugs having tranquilizing abilities, have been proposed so far, the key mechanism for its selectivity and subsequent interaction with neurotransmitters has not been established yet. We report ultraviolet (UV) and infrared (IR) spectra under ultra-cold conditions of Li+ and Na+ complexes of noradrenaline (NAd, norepinephrine), a neurotransmitter responsible for the body's response to stress or danger, in an effort to provide a molecular level understanding of the conformational changes of NAd due to its interactions with these two cations. A detailed analysis of the IR spectra, aided by quantum chemical calculations, reveals that the Li+-noradrenaline (NAd-Li+) complex forms only an extended structure, while the NAd-Na+ and protonated (NAd-H+) complexes form both folded and extended structures. This conformational preference of the NAd-Li+ complex is further explained by considering specific conformational distributions in solution. Our results clearly discern the unique structural motifs that NAd adopts when interacting with Li+ compared with other abundant cations in the human body (Na+) and can form the basis of a molecular level understanding of the selectivity of Li+ in biological systems.
Collapse
Affiliation(s)
- Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Hiromichi Wako
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352, USA. and Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
7
|
Yang N, Duong CH, Kelleher PJ, McCoy AB, Johnson MA. Deconstructing water's diffuse OH stretching vibrational spectrum with cold clusters. Science 2019; 364:275-278. [PMID: 31000660 DOI: 10.1126/science.aaw4086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
The diffuse vibrational envelope displayed by water precludes direct observation of how different hydrogen-bond topologies dictate the spectral response of individual hydroxy group (OH) oscillators. Using cold, isotopically labeled cluster ions, we report the spectral signatures of a single, intact water (H2O) molecule embedded at various sites in the clathrate-like cage structure adopted by the Cs+·(D2O)20 ion. These patterns reveal the site-dependent correlation between the frequencies of the two OH groups on the same water molecule and establish that the bound OH companion of the free OH group exclusively accounts for bands in the lower-energy region of the spectrum. The observed multiplet structures reveal the homogeneous linewidths of the fundamentals and quantify the anharmonic contributions arising from coupling to both the intramolecular bending and intermolecular soft modes.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | - Chinh H Duong
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | - Patrick J Kelleher
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Fischer KC, Sherman SL, Voss JM, Zhou J, Garand E. Microsolvation Structures of Protonated Glycine and l-Alanine. J Phys Chem A 2019; 123:3355-3366. [DOI: 10.1021/acs.jpca.9b01578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kaitlyn C. Fischer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Summer L. Sherman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jonathan M. Voss
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jia Zhou
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Boyer MA, Marsalek O, Heindel JP, Markland TE, McCoy AB, Xantheas SS. Beyond Badger's Rule: The Origins and Generality of the Structure-Spectra Relationship of Aqueous Hydrogen Bonds. J Phys Chem Lett 2019; 10:918-924. [PMID: 30735052 DOI: 10.1021/acs.jpclett.8b03790] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The structure of hydrogen bonded networks is intimately intertwined with their dynamics. Despite the incredibly wide range of hydrogen bond strengths encountered in water clusters, ion-water clusters, and liquid water, we demonstrate that the previously reported correlation between the change in the equilibrium bond length of the hydrogen bonded OH covalent bond and the corresponding shift in its harmonic frequency in water clusters is much more broadly applicable. Surprisingly, this correlation describes the ratios for both the equilibrium OH bond length/harmonic frequency and the vibrationally averaged bond length/anharmonic frequency in water, hydronium water, and halide water clusters. Consideration of harmonic and anaharmonic data leads to a correlation of -19 ± 1 cm-1/0.001 Å. The fundamental nature of this correlation is further confirmed through the analysis of ab initio Molecular Dynamics (AIMD) trajectories for liquid water. We demonstrate that this simple correlation for both harmonic and anharmonic systems can be modeled by the response of an OH bond to an external field. Treating the OH bond as a Morse oscillator, we develop analytic expressions, which relate the ratio of the shift in the vibrational frequency of the hydrogen-bonded OH bond to the shift in OH bond length, to parameters in the Morse potential and the ratio of the first and second derivatives of the field-dependent projection of the dipole moment of water onto the hydrogen-bonded OH bond. Based on our analysis, we develop a protocol for reconstructing the AIMD spectra of liquid water from the sampled distribution of the OH bond lengths. Our findings elucidate the origins of the relationship between the molecular structure of the fleeting hydrogen-bonded network and the ensuing dynamics, which can be probed by vibrational spectroscopy.
Collapse
Affiliation(s)
- Mark A Boyer
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Ondrej Marsalek
- Charles University , Faculty of Mathematics and Physics , Ke Karlovu 3 , 121 16 Prague 2, Czech Republic
| | - Joseph P Heindel
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Thomas E Markland
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Anne B McCoy
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Sotiris S Xantheas
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
- Advanced Computing, Mathematics and Data Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , P.O. Box 999, MS K1-83, Richland , Washington 99352 , United States
| |
Collapse
|
10
|
Mucha E, Stuckmann A, Marianski M, Struwe WB, Meijer G, Pagel K. In-depth structural analysis of glycans in the gas phase. Chem Sci 2019; 10:1272-1284. [PMID: 30809341 PMCID: PMC6357860 DOI: 10.1039/c8sc05426f] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of m/z, collision cross sections and IR fingerprints can be obtained. This multidimensional data will then be compared to a comprehensive reference library of intact glycans and their fragments to accurately identify unknown glycans on a high-throughput scale with minimal sample requirements. Due to the complementarity of the obtained information, this novel approach is highly diagnostic and also suitable for the identification of larger glycans; however, the workflow and instrumentation is straightforward enough to be implemented into a user-friendly setup.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Alexandra Stuckmann
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mateusz Marianski
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Weston B Struwe
- Oxford Glycobiology Institute , Department of Biochemistry , University of Oxford , OX1 3QU Oxford , UK
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
11
|
Duong CH, Yang N, Kelleher PJ, Johnson MA, DiRisio RJ, McCoy AB, Yu Q, Bowman JM, Henderson BV, Jordan KD. Tag-Free and Isotopomer-Selective Vibrational Spectroscopy of the Cryogenically Cooled H9O4+ Cation with Two-Color, IR–IR Double-Resonance Photoexcitation: Isolating the Spectral Signature of a Single OH Group in the Hydronium Ion Core. J Phys Chem A 2018; 122:9275-9284. [DOI: 10.1021/acs.jpca.8b08507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chinh H. Duong
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick J. Kelleher
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Ryan J. DiRisio
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Qi Yu
- Department of Chemistry and Cherry L. Emerson Center for Computational Science, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Computational Science, Emory University, Atlanta, Georgia 30322, United States
| | - Bryan V. Henderson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kenneth D. Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Yang N, Duong CH, Kelleher PJ, Johnson MA. Unmasking Rare, Large-Amplitude Motions in D 2-Tagged I -·(H 2O) 2 Isotopomers with Two-Color, Infrared-Infrared Vibrational Predissociation Spectroscopy. J Phys Chem Lett 2018; 9:3744-3750. [PMID: 29924622 DOI: 10.1021/acs.jpclett.8b01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a two-color, isotopomer-selective infrared-infrared population-labeling method that can monitor very slow spectral diffusion of OH oscillators in H-bonded networks and apply it to the I-·(HDO)·(D2O) and I-·(H2O)·(D2O) systems, which are cryogenically cooled and D2-tagged at an ion trap temperature of 15 K. These measurements reveal very large (>400 cm-1), spontaneous spectral shifts despite the fact that the predissociation spectra in the OH stretching region of both isotopologues are sharp and readily assigned to four fundamentals of largely decoupled OH oscillators held in a cyclic H-bonded network. This spectral diffusion is not observed in the untagged isotopologues of the dihydrate clusters that are generated under the same source conditions but does become apparent at about 75 K. These results are discussed in the context of the large-amplitude "jump" mechanism for H-bond relaxation dynamics advanced by Laage and Hynes in an experimental scenario where rare events can be captured by following the migration of OH groups among the four available positions in the quasi-rigid equilibrium structure.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Chinh H Duong
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Patrick J Kelleher
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
13
|
Voss JM, Fischer KC, Garand E. Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters. J Phys Chem Lett 2018; 9:2246-2250. [PMID: 29659284 DOI: 10.1021/acs.jpclett.8b00738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present an infrared predissociation (IRPD) study of microsolvated GlyH+(H2O) n and GlyH+(D2O) n clusters, formed inside of a cryogenic ion trap via condensation of H2O or D2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O-H and O-D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH+(H2O) n and GlyH+(D2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyH+ ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. The use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.
Collapse
Affiliation(s)
- Jonathan M Voss
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Kaitlyn C Fischer
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Etienne Garand
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
14
|
Consta S, Oh MI, Sharawy M, Malevanets A. Macroion–Solvent Interactions in Charged Droplets. J Phys Chem A 2018; 122:5239-5250. [DOI: 10.1021/acs.jpca.8b01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Anatoly Malevanets
- Department of Electrical and Computer Engineering, The University of University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
15
|
Hirshberg B, Rossich Molina E, Götz AW, Hammerich AD, Nathanson GM, Bertram TH, Johnson MA, Gerber RB. N2O5at water surfaces: binding forces, charge separation, energy accommodation and atmospheric implications. Phys Chem Chem Phys 2018; 20:17961-17976. [DOI: 10.1039/c8cp03022g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the interactions between N2O5and water in nano-sized clusters, in bulk and on the surface of water.
Collapse
Affiliation(s)
- Barak Hirshberg
- The Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics
- the Hebrew University
- Jerusalem 9190401
- Israel
| | - Estefanía Rossich Molina
- The Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics
- the Hebrew University
- Jerusalem 9190401
- Israel
| | - Andreas W. Götz
- San Diego Supercomputer Center
- University of California
- San Diego, La Jolla
- USA
| | | | | | | | | | - R. Benny Gerber
- The Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics
- the Hebrew University
- Jerusalem 9190401
- Israel
- Department of Chemistry, University of California, Irvine
| |
Collapse
|
16
|
Yang N, Duong CH, Kelleher PJ, Johnson MA, McCoy AB. Isolation of site-specific anharmonicities of individual water molecules in the I−·(H2O)2 complex using tag-free, isotopomer selective IR-IR double resonance. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Mucha E, González Flórez AI, Marianski M, Thomas DA, Hoffmann W, Struwe WB, Hahm HS, Gewinner S, Schöllkopf W, Seeberger PH, von Helden G, Pagel K. Fingerabdrücke für Glykane durch Spektroskopie kalter Ionen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
- Institut für Chemie und Biochemie der; Freien Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | | | - Mateusz Marianski
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Daniel A. Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Waldemar Hoffmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
- Institut für Chemie und Biochemie der; Freien Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Weston B. Struwe
- Oxford Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU Großbritannien
| | - Heung S. Hahm
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Peter H. Seeberger
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Institut für Chemie und Biochemie der; Freien Universität Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
- Institut für Chemie und Biochemie der; Freien Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
18
|
Mucha E, González Flórez AI, Marianski M, Thomas DA, Hoffmann W, Struwe WB, Hahm HS, Gewinner S, Schöllkopf W, Seeberger PH, von Helden G, Pagel K. Glycan Fingerprinting via Cold-Ion Infrared Spectroscopy. Angew Chem Int Ed Engl 2017; 56:11248-11251. [PMID: 28513924 DOI: 10.1002/anie.201702896] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 11/09/2022]
Abstract
The diversity of stereochemical isomers present in glycans and glycoconjugates poses a formidable challenge for comprehensive structural analysis. Typically, sophisticated mass spectrometry (MS)-based techniques are used in combination with chromatography or ion-mobility separation. However, coexisting structurally similar isomers often render an unambiguous identification impossible. Other powerful techniques such as gas-phase infrared (IR) spectroscopy have been limited to smaller glycans, since conformational flexibility and thermal activation during the measurement result in poor spectral resolution. This limitation can be overcome by using cold-ion spectroscopy. The vibrational fingerprints of cold oligosaccharide ions exhibit a wealth of well-resolved absorption features that are diagnostic for minute structural variations. The unprecedented resolution of cold-ion spectroscopy coupled with tandem MS may render this the key technology to unravel complex glycomes.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.,Institut für Chemie und Biochemie der, Freien Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | | | - Mateusz Marianski
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Waldemar Hoffmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.,Institut für Chemie und Biochemie der, Freien Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Heung S Hahm
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Peter H Seeberger
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institut für Chemie und Biochemie der, Freien Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.,Institut für Chemie und Biochemie der, Freien Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| |
Collapse
|
19
|
DeBlase AF, Harrilal CP, Lawler JT, Burke NL, McLuckey SA, Zwier TS. Conformation-Specific Infrared and Ultraviolet Spectroscopy of Cold [YAPAA+H]+ and [YGPAA+H]+ Ions: A Stereochemical “Twist” on the β-Hairpin Turn. J Am Chem Soc 2017; 139:5481-5493. [PMID: 28353347 DOI: 10.1021/jacs.7b01315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew F. DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Christopher P. Harrilal
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - John T. Lawler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Nicole L. Burke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
20
|
Affiliation(s)
- Sotiris S. Xantheas
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, MS K1-83, Richland, WA 99352, USA
| |
Collapse
|
21
|
Gorlova O, DePalma JW, Wolke CT, Brathwaite A, Odbadrakh TT, Jordan KD, McCoy AB, Johnson MA. Characterization of the primary hydration shell of the hydroxide ion with H2 tagging vibrational spectroscopy of the OH− ⋅ (H2O)n=2,3 and OD− ⋅ (D2O)n=2,3 clusters. J Chem Phys 2016; 145:134304. [DOI: 10.1063/1.4962912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Olga Gorlova
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Joseph W. DePalma
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Conrad T. Wolke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Antonio Brathwaite
- College of Science and Mathematics, University of the Virgin Islands, St. Thomas, Virgin Islands 00802, USA
| | - Tuguldur T. Odbadrakh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15620, USA
| | - Kenneth D. Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15620, USA
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark A. Johnson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
22
|
Wolke CT, Fournier JA, Miliordos E, Kathmann SM, Xantheas SS, Johnson MA. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: Going beyond pattern recognition to harvest the structural information encoded in vibrational spectra. J Chem Phys 2016; 144:074305. [DOI: 10.1063/1.4941285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Conrad T. Wolke
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Joseph A. Fournier
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Evangelos Miliordos
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Shawn M. Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S. Xantheas
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| |
Collapse
|