3
|
Braïda B, Chen Z, Wu W, Hiberty PC. Valence Bond Alternative Yielding Compact and Accurate Wave Functions for Challenging Excited States. Application to Ozone and Sulfur Dioxide. J Chem Theory Comput 2020; 17:330-343. [PMID: 33319998 DOI: 10.1021/acs.jctc.0c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel state-averaged version of ab initio nonorthogonal valence bond method is described, for the sake of accurate theoretical studies of excited states in the valence bond framework. With respect to standard calculations in the molecular orbital framework, the state-averaged breathing-orbital valence bond (BOVB) method has the advantage to be free from the penalizing constraint for the ground and excited state(s) to share the same unique set of orbitals. The ability of the BOVB method to faithfully describe excited states and to compute accurate transition energies from the ground state is tested on the five lowest-lying singlet electronic states of ozone and sulfur dioxide, among which 11B2 and 21A1 are the challenging ones. As the 11A2, 11B1, and 11B2 states are of different symmetries than the ground state, they can be calculated at the state-specific BOVB level. On the other hand, the 21A1 states and the 11A1 ground states, which are of like symmetry, are calculated with the state-averaged BOVB technique. In all cases, the calculated vertical energies are close to the experimental values when available, and at par with the most sophisticated calculations in the molecular framework, despite the extreme compactness of the BOVB wave functions, made of no more than 5-9 valence bond structures in all cases. The features that allow the combination of compactness and accuracy in challenging cases are analyzed. For the "ionic" 11B2 states, which are the site of important charge fluctuations, it is because of the built-in dynamic correlation inherent to the BOVB method. For the 21A1 ones, this is the fact that these states have the degree of freedom of having different orbitals than the ground states, even though they are of like symmetry and calculated simultaneously using the newly implemented state-average BOVB algorithm. Finally, the description of the excited states in terms of Lewis structures is insightful, rationalizing the fast ring closure for the 21A1 state of ozone and predicting some diradical character in the so-called "ionic" 11B2 states.
Collapse
Affiliation(s)
- Benoît Braïda
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616 CNRS, Paris 75252 France
| | - Zhenhua Chen
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
6
|
Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020; 152:154102. [PMID: 32321259 DOI: 10.1063/5.0005188] [Citation(s) in RCA: 551] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.
Collapse
Affiliation(s)
- Giuseppe M J Barca
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Laura Carrington
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Nuwan De Silva
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119, USA
| | - J Emiliano Deustua
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Jeffrey R Gour
- Microsoft, 15590 NE 31st St., Redmond, Washington 98052, USA
| | - Anastasia O Gunina
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Emilie Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Taylor Harville
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Stephan Irle
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Joe Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Karol Kowalski
- Physical Sciences Division, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Sarom S Leang
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Hui Li
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jesse J Lutz
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joani Mato
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Hiroya Nakata
- Kyocera Corporation, Research Institute for Advanced Materials and Devices, 3-5-3 Hikaridai Seika-cho, Souraku-gun, Kyoto 619-0237, Japan
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Poole
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Spencer R Pruitt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Alistair P Rendell
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Luke B Roskop
- Cray Inc., a Hewlett Packard Enterprise Company, 2131 Lindau Ln #1000, Bloomington, Minnesota 55425, USA
| | - Klaus Ruedenberg
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | | | - Michael W Schmidt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Masha Sosonkina
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Vaibhav Sundriyal
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Ananta Tiwari
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Jorge L Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Bryce Westheimer
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Marta Włoch
- 530 Charlesina Dr., Rochester, Michigan 48306, USA
| | - Peng Xu
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
8
|
Chien AD, Holmes AA, Otten M, Umrigar CJ, Sharma S, Zimmerman PM. Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction. J Phys Chem A 2018; 122:2714-2722. [DOI: 10.1021/acs.jpca.8b01554] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alan D. Chien
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam A. Holmes
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Matthew Otten
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - C. J. Umrigar
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Powell AD, Dattani NS, Spada RFK, Machado FBC, Lischka H, Dawes R. Investigation of the ozone formation reaction pathway: Comparisons of full configuration interaction quantum Monte Carlo and fixed-node diffusion Monte Carlo with contracted and uncontracted MRCI. J Chem Phys 2017; 147:094306. [DOI: 10.1063/1.4990673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew D. Powell
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | | | - Rene F. K. Spada
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12.228-900 São Paulo, Brazil
| | - Hans Lischka
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
11
|
Theis D, Ivanic J, Windus TL, Ruedenberg K. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study. J Chem Phys 2016; 144:104304. [PMID: 26979690 PMCID: PMC4788607 DOI: 10.1063/1.4942019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/26/2016] [Indexed: 11/14/2022] Open
Abstract
The metastable ring structure of the ozone 1(1)A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two (1)A1 states. In the present work, valence correlated energies of the 1(1)A1 state and the 2(1)A1 state were calculated at the 1(1)A1 open minimum, the 1(1)A1 ring minimum, the transition state between these two minima, the minimum of the 2(1)A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1(1)A1 state, the present calculations yield the estimates of (ring minimum-open minimum) ∼45-50 mh and (transition state-open minimum) ∼85-90 mh. For the (2(1)A1-(1)A1) excitation energy, the estimate of ∼130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (2(1)A1-(1)A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 1(1)A1 surface and that of the minimum on the 2(1)A1 surface nearly coincide. More accurate predictions of the energy differences also require CI expansions to at least sextuple excitations with respect to the valence space. For every wave function considered, the omission of the correlations of the 2s oxygen orbitals, which is a widely used approximation, was found to cause errors of about ±10 mh with respect to the energy differences.
Collapse
Affiliation(s)
- Daniel Theis
- Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011, USA
| | - Joseph Ivanic
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, DSITP, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA
| | - Theresa L Windus
- Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011, USA
| | - Klaus Ruedenberg
- Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|