1
|
Maiz-Pastor P, Brémond E, Pérez-Jiménez AJ, Adamo C, Sancho-García JC. Study of Sterically Crowded Alkanes: Assessment of Non-Empirical Density Functionals Including Double-Hybrid (Cost-Effective) Methods. Chemphyschem 2024:e202400466. [PMID: 39257369 DOI: 10.1002/cphc.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
We theoretically study here the homolytic dissociation reactions of sterically crowded alkanes of increasing size, carrying three different (bulky) substituents such as tert-butyl, adamantyl, and [1.1.1]propellanyl, employing a family of parameter-free functionals ranging from semi-local, to hybrid and double-hybrid models. The study is complemented with the interaction between a pair of HC(CH3)3 molecules at repulsive and attractive regions, as an example of a system composed by a pair of weakly bound sterically crowded alkanes. We also assessed the effect of incorporating reliable dispersion corrections (i. e., D4 or NL) for all the functionals assessed, as well as the use of a tailored basis set (DH-SVPD) for non-covalent interactions, which provides the best trade-off between accuracy and computational cost for a seemingly extended applications to branched or crowded systems. Overall, the PBE-QIDH/DH-SVPD and r2SCAN-QIDH/DH-SVPD methods represent an excellent compromise providing relatively low, and thus very competitive, errors at a fraction of the cost of other quantum-chemical methods in use.
Collapse
Affiliation(s)
- P Maiz-Pastor
- Department of Physical Chemistry, University of Alicante, E-, 03080, Alicante, Spain
| | - E Brémond
- Université de Paris-cité, ITODYS, CNRS, F-, 75006, Paris, France
| | - A J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-, 03080, Alicante, Spain
| | - C Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, F, 75005, Paris, France
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, E-, 03080, Alicante, Spain
| |
Collapse
|
2
|
Brémond É, José Pérez-Jiménez Á, Sancho-García JC, Adamo C. Comment on "Dispersion-corrected r2SCAN based double-hybrid functionals" [J. Chem. Phys. 159, 224103 (2023)]. J Chem Phys 2024; 161:057101. [PMID: 39092952 DOI: 10.1063/5.0217811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- Éric Brémond
- Université Paris Cité, ITODYS, CNRS, F-75006 Paris, France
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
| |
Collapse
|
3
|
Santra G, Calinsky R, Martin JML. Benefits of Range-Separated Hybrid and Double-Hybrid Functionals for a Large and Diverse Data Set of Reaction Energies and Barrier Heights. J Phys Chem A 2022; 126:5492-5505. [PMID: 35930677 PMCID: PMC9393870 DOI: 10.1021/acs.jpca.2c03922] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Indexed: 11/28/2022]
Abstract
To better understand the thermochemical kinetics and mechanism of a specific chemical reaction, an accurate estimation of barrier heights (forward and reverse) and reaction energies is vital. Because of the large size of reactants and transition state structures involved in real-life mechanistic studies (e.g., enzymatically catalyzed reactions), density functional theory remains the workhorse for such calculations. In this paper, we have assessed the performance of 91 density functionals for modeling the reaction energies and barrier heights on a large and chemically diverse data set (BH9) composed of 449 organic chemistry reactions. We have shown that range-separated hybrid functionals perform better than the global hybrids for BH9 barrier heights and reaction energies. Except for the PBE-based range-separated nonempirical double hybrids, range separation of the exchange term helps improve the performance for barrier heights and reaction energies. The 16-parameter Berkeley double hybrid, ωB97M(2), performs remarkably well for both properties. However, our minimally empirical range-separated double hybrid functionals offer marginally better accuracy than ωB97M(2) for BH9 barrier heights and reaction energies.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Rivka Calinsky
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
4
|
Brémond É, Li H, Pérez-Jiménez ÁJ, Sancho-García JC, Adamo C. Tackling an accurate description of molecular reactivity with double-hybrid density functionals. J Chem Phys 2022; 156:161101. [DOI: 10.1063/5.0087586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this Communication, we assess a panel of 18 double-hybrid density functionals for the modeling of the thermochemical and kinetic properties of an extended dataset of 449 organic chemistry reactions belonging to the BH9 database. We show that most of DHs provide a statistically robust performance to model barrier height and reaction energies in reaching the “chemical accuracy.” In particular, we show that nonempirical DHs, such as PBE0-DH and PBE-QIDH, or minimally parameterized alternatives, such as ωB2PLYP and B2K-PLYP, succeed to accurately model both properties in a balanced fashion. We demonstrate, however, that parameterized approaches, such as ωB97X-2 or DSD-like DHs, are more biased to only one of both properties.
Collapse
Affiliation(s)
- Éric Brémond
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
5
|
Santra G, Martin JML. Do Double-Hybrid Functionals Benefit from Regularization in the PT2 Term? Observations from an Extensive Benchmark. J Phys Chem Lett 2022; 13:3499-3506. [PMID: 35417181 PMCID: PMC9036584 DOI: 10.1021/acs.jpclett.2c00718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We put to the test a recent suggestion [Shee, J., et al. J. Phys. Chem. Lett. 2021, 12 (50), 12084-12097] that MP2 regularization might improve the performance of double-hybrid density functionals. Using the very large and chemically diverse GMTKN55 benchmark, we find that κ-regularization is indeed beneficial at lower percentages of Hartree-Fock exchange, especially if spin-component scaling is not applied [such as in B2GP-PLYP or ωB97M(2)]. This benefit dwindles for DSD and DOD functionals and vanishes entirely in the ∼70% HF exchange region optimal for them.
Collapse
|
6
|
Brémond E, Pérez-Jiménez AJ, Adamo C, Sancho-García JC. Stability of the polyynic form of C 18, C 22, C 26, and C 30 nanorings: a challenge tackled by range-separated double-hybrid density functionals. Phys Chem Chem Phys 2022; 24:4515-4525. [PMID: 35119058 DOI: 10.1039/d1cp04996h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We calculate the relative energy between the cumulene and polyyne structures of a set of C4k+2 (k = 4-7) rings (C18, C22, C26, and C30 prompted by the recent synthesis of the cyclo[18]carbon (or simply C18) compounds. Reference results were obtained by a costly Quantum Monte-Carlo (QMC) approach, providing thus very accurate values allowing to systematically compare the performance of a variety of wavefunction methods [(i.e., MP2, SCS-MP2, SOS-MP2, DLPNO-CCSD, and DLPNO-CCSD(T)] as well as DFT approaches, applying for the latter a diversity of density functionals covering global and range-separated hybrid and double-hybrid models. The influence of the use of a range-separation scheme for density functionals, for both hybrid and double-hybrid expressions, is discussed according to its key role. Overall, range-separated double-hybrid functionals (e.g., RSX-QIDH) behave very accurately and provide competitive results compared with DLPNO-CCSD(T), at a more reasonable computational cost.
Collapse
Affiliation(s)
- E Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - A J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain.
| | - C Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), UMR 8060, F-75005 Paris, France.,Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005, Paris, France
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
7
|
Alipour M, Izadkhast T. Do any types of double-hybrid models render the correct order of excited state energies in inverted singlet–triplet emitters? J Chem Phys 2022; 156:064302. [DOI: 10.1063/5.0077722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Tahereh Izadkhast
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
8
|
Sancho-García JC, Brémond E, Ricci G, Pérez-Jiménez AJ, Olivier Y, Adamo C. Violation of Hund’s rule in molecules: Predicting the excited-state energy inversion by TD-DFT with double-hybrid methods. J Chem Phys 2022; 156:034105. [DOI: 10.1063/5.0076545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. C. Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - E. Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - G. Ricci
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, B-5000 Namur, Belgium
| | - A. J. Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - Y. Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, B-5000 Namur, Belgium
| | - C. Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
9
|
Casanova-Páez M, Goerigk L. Time-Dependent Long-Range-Corrected Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling: A Comprehensive Analysis of Singlet-Singlet and Singlet-Triplet Excitation Energies. J Chem Theory Comput 2021; 17:5165-5186. [PMID: 34291643 DOI: 10.1021/acs.jctc.1c00535] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the work on spin-component and spin-opposite scaled (SCS/SOS) global double hybrids for singlet-singlet excitations by Schwabe and Goerigk [ J. Chem. Theory Comput. 2017, 13, 4307-4323] and our own works on new long-range corrected (LC) double hybrids for singlet-singlet and singlet-triplet excitations [ J. Chem. Theory Comput. 2019, 15, 4735-4744 and J. Chem. Phys. 2020, 153, 064106], we present new LC double hybrids with SCS/SOS that demonstrate further improvement over previously published results and methods. We introduce new unscaled and scaled versions of different global and LC double hybrids based on Becke88 or PBE exchange combined with LYP, PBE, or P86 correlation. For singlet-singlet excitations, we cross-validate them on six benchmark sets that cover small to medium-sized chromophores with different excitation types (local-valence, Rydberg, and charge transfer). For singlet-triplet excitations, we perform the cross-validation on three different benchmark sets following the same analysis as in our previous work in 2020. In total, 203 excitations are analyzed. Our results confirm and extend those of Schwabe and Goerigk regarding the superior performance of SCS and SOS variants compared to their unscaled parents by decreasing mean absolute deviations, root-mean-square deviations, or error spans by more than half and bringing absolute mean deviations closer to zero. Our SCS/SOS variants are shown to be highly efficient and robust for the computation of vertical excitation energies, which even outperform specialized double hybrids that also contain an LC in their perturbative part. In particular, our new SCS/SOS-ωPBEPP86 and SCS/SOS-ωB88PP86 functionals are four of the most accurate and robust methods tested in this work, and we fully recommend them for future applications. However, if the relevant SCS and SOS algorithms are not available to the user, we suggest ωPBEPP86 as the best unscaled method in this work.
Collapse
Affiliation(s)
- Marcos Casanova-Páez
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Alipour M, Karimi N. Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match. J Chem Theory Comput 2021; 17:4077-4091. [PMID: 34085815 DOI: 10.1021/acs.jctc.1c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The range-separated version of double-hybrid density functional theory (DH-DFT) with a remarkable efficiency for both ground-state and excited-state characteristics has recently come into spotlight. In this work, based on theoretical arguments, several variants of spin-opposite-scaled range-separated exchange double-hybrid models (SOS-RSX-DHs) have been proposed and validated. More specifically, we first extend the RSX-DHs to design some other related models. Next, the SOS version of the resulting approximations is constructed and thoroughly evaluated using standard benchmark compilations of various properties. It is shown that although there are properties for which the RSX-DH and SOS-RSX-DH frameworks are rival, there are still some problems particularly prone to the self-interaction error issues where our proposed models seem to be beneficial. Furthermore, some of the presented models devoid of any additional corrections can also surpass the recently proposed approximations from different rungs of "Jacob's Ladder". Nonetheless, perusing the results of different methods and detailed comparisons with the predecessors discloses that all things may not necessarily be well with the RSX and SOS-RSX schemes, where the parent DHs as well as their SOS counterparts can still come into play.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Niloofar Karimi
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
11
|
Brémond É, Ottochian A, Pérez-Jiménez ÁJ, Ciofini I, Scalmani G, Frisch MJ, Sancho-García JC, Adamo C. Assessing challenging intra- and inter-molecular charge-transfer excitations energies with double-hybrid density functionals. J Comput Chem 2021; 42:970-981. [PMID: 33748983 DOI: 10.1002/jcc.26517] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
We investigate the performance of a set of recently introduced range-separated double-hybrid functionals, namely ωB2-PLYP, ωB2GP-PLYP, RSX-0DH, and RSX-QIDH models for hard-to-calculate excitation energies. We compare with the parent (B2-PLYP, B2GP-PLYP, PBE0-DH, and PBE-QIDH) and other (DSD-PBEP86) double-hybrid models as well as with some of the most widely employed hybrid functionals (B3LYP, PBE0, M06-2X, and ωB97X). For this purpose, we select a number of medium-sized intra- and inter-molecular charge-transfer excitations, which are known to be challenging to calculate using time-dependent density-functional theory (TD-DFT) and for which accurate reference values are available. We assess whether the high accuracy shown by the newest double-hybrid models is also confirmed for those cases too. We find that asymptotically corrected double-hybrid models yield a superior performance, especially for the inter-molecular charge-transfer excitation energies, as compared to standard double-hybrid models. Overall, the PBE-QIDH and its corresponding range-separated RSX-QIDH functional are recommended for general-purpose TD-DFT applications, depending on whether long-range effects are expected to play a significant role.
Collapse
Affiliation(s)
- Éric Brémond
- Université de Paris, ITODYS, CNRS, Paris, F-75006, France
| | - Alistar Ottochian
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS, Paris, France
| | | | - Ilaria Ciofini
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS, Paris, France
| | | | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Förster A, Visscher L. Double hybrid DFT calculations with Slater type orbitals. J Comput Chem 2020; 41:1660-1684. [PMID: 32297682 PMCID: PMC7317772 DOI: 10.1002/jcc.26209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
On a comprehensive database with 1,644 datapoints, covering several aspects of main-group as well as of transition metal chemistry, we assess the performance of 60 density functional approximations (DFA), among them 36 double hybrids (DH). All calculations are performed using a Slater type orbital (STO) basis set of triple-ζ (TZ) quality and the highly efficient pair atomic resolution of the identity approach for the exchange- and Coulomb-term of the KS matrix (PARI-K and PARI-J, respectively) and for the evaluation of the MP2 energy correction (PARI-MP2). Employing the quadratic scaling SOS-AO-PARI-MP2 algorithm, DHs based on the spin-opposite-scaled (SOS) MP2 approximation are benchmarked against a database of large molecules. We evaluate the accuracy of STO/PARI calculations for B3LYP as well as for the DH B2GP-PLYP and show that the combined basis set and PARI-error is comparable to the one obtained using the well-known def2-TZVPP Gaussian-type basis set in conjunction with global density fitting. While quadruple-ζ (QZ) calculations are currently not feasible for PARI-MP2 due to numerical issues, we show that, on the TZ level, Jacob's ladder for classifying DFAs is reproduced. However, while the best DHs are more accurate than the best hybrids, the improvements are less pronounced than the ones commonly found on the QZ level. For conformers of organic molecules and noncovalent interactions where very high accuracy is required for qualitatively correct results, DHs provide only small improvements over hybrids, while they still excel in thermochemistry, kinetics, transition metal chemistry and the description of strained organic systems.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical ChemistryVrije UniversiteitAmsterdamThe Netherlands
| | - Lucas Visscher
- Theoretical ChemistryVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
13
|
How does SCAN compare to PBE in the framework of parameter-free spin-opposite-scaled double-hybrids? Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Alipour M, Izadkhast T. Appraising spin-state energetics in transition metal complexes using double-hybrid models: accountability of SOS0-PBESCAN0-2(a) as a promising paradigm. Phys Chem Chem Phys 2020; 22:9388-9404. [DOI: 10.1039/d0cp00807a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through a comprehensive survey, reliable double-hybrid models have been validated and proposed for spin-state energetics in transition metal complexes.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71946-84795
- Iran
| | - Tahereh Izadkhast
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71946-84795
- Iran
| |
Collapse
|
15
|
Najibi A, Goerigk L. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. J Chem Theory Comput 2018; 14:5725-5738. [DOI: 10.1021/acs.jctc.8b00842] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asim Najibi
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Mehta N, Casanova-Páez M, Goerigk L. Semi-empirical or non-empirical double-hybrid density functionals: which are more robust? Phys Chem Chem Phys 2018; 20:23175-23194. [PMID: 30062343 DOI: 10.1039/c8cp03852j] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-empirical double-hybrid density functionals (DHDFs) is a very active research area with the number of approaches in this field having increased rapidly. At the same time, there is a lack of published work that provides a fair assessment and comparison between non-empirical and semi-empirical DHDFs on an equal footing. Herein, we close this gap and present a thorough analysis of both classes of DHDFs on the large GMTKN55 benchmark database for general main-group thermochemistry, kinetics, and noncovalent interactions [Goerigk et al., Phys. Chem. Chem. Phys., 2017, 19, 32184-32215]. In total, 115 variations of dispersion-corrected and -uncorrected DHDFs are tested, which will be condensed to an in-depth assessment of 31 methods: 19 non-empirical and 12 semi-empirical DHDFs. As such, our study represents the largest DHDF study ever conducted and can serve as an important benchmark informing method developers and users alike. Our results show that semi-empirical DHDFs are the most robust density functional approximations and more reliable and accurate than non-empirical ones. In fact, some non-empirical approaches are even outperformed by hybrid approaches or even dispersion-corrected and -uncorrected MP2 and SCS-MP2. SOS0-PBE0-2-D3(BJ) is the only exception and the only non-empirical DHDF that we can safely recommend for general applicability. However, it is still outperformed by six semi-empirical DHDFs, of which we would like to particularly recommend the following five: ωB97X-2-D3(BJ), DSD-BLYP-D3(BJ), DSD-PBEP86-D3(BJ), B2NC-PLYP-D3(BJ), and B2GPPLYP-D3(BJ). Our findings seriously question current trends in the field and they highlight that novel strategies have to be found in order to outperform the currently best density functional theory methods on the market. We hope that our study can function as an important cornerstone inspiring such a change of direction in the field.
Collapse
Affiliation(s)
- Nisha Mehta
- School of Chemistry, The University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
17
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
18
|
|
19
|
Roch LM, Baldridge KK. General optimization procedure towards the design of a new family of minimal parameter spin-component-scaled double-hybrid density functional theory. Phys Chem Chem Phys 2017; 19:26191-26200. [PMID: 28930316 DOI: 10.1039/c7cp04125j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general optimization procedure towards the development and implementation of a new family of minimal parameter spin-component-scaled double-hybrid (mSD) density functional theory (DFT) is presented. The nature of the proposed exchange-correlation functional establishes a methodology with minimal empiricism. This new family of double-hybrid (DH) density functionals is demonstrated using the PBEPBE functional, illustrating the optimization procedure to the mSD-PBEPBE method, and the performance characteristics shown for a set of non-covalent complexes covering a broad regime of weak interactions. With only two parameters, mSD-PBEPBE and its cost-effective counterpart, RI-mSD-PBEPBE, show a mean absolute error of ca. 0.4 kcal mol-1 averaged over 66 weak interacting systems. Following a successive 2D-grid refinement for a CBS extrapolation of the coefficients, the optimization procedure can be recommended for the design and implementation of a variety of additional DH methods using any of the plethora of currently available functionals.
Collapse
Affiliation(s)
- Loïc M Roch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
20
|
On the opposite-spin to same-spin ratio of absolute and interaction MP2 correlation energy in parameter-free spin-opposite-scaled double hybrids. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Schwabe T, Goerigk L. Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling. J Chem Theory Comput 2017; 13:4307-4323. [PMID: 28763220 DOI: 10.1021/acs.jctc.7b00386] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the first time, we combine time-dependent double-hybrid density functional approximations (TD-DHDFAs) for the calculation of electronic excitation energies with the concepts of spin-component and spin-opposite scaling (SCS/SOS) of electron-pair contributions to their nonlocal correlation components. Different flavors of this idea, ranging from standard SCS parameters to fully fitted parameter sets, are presented and tested on six different parent DHDFAs. For cross-validation, we assess those methods on three benchmark sets that cover small- to medium-sized chromophores (up to 78 atoms) and different excitation types. For this purpose, we also introduce new CC3 reference values for the popular Gordon benchmark set that we recommend using in future studies. Our results confirm that already the (unscaled) parent TD-DHDFAs are accurate and outperform some wave function methods. Further introduction of SCS/SOS eliminates extreme outliers, reduces deviation spans from reference values by up to 0.5 eV, aligns the performance of the Tamm-Dancoff approximation (TDA) to that of full TD calculations, and also enables a more balanced description of different excitation types. The best-performing TD-based methods in our cross validation have mean absolute deviations as low as 0.14 eV compared to the time- and resource-intensive CC3 approach. A very important finding is that we also obtained SOS variants with excellent performance, contrary to wave function based methods. This opens a future pathway to highly efficient methods for the optimization of excited-state geometries, particularly when paired with computing strategies such as the Laplace transform. We recommend our SCS- and SOS-based variants for further testing and subsequent applications.
Collapse
Affiliation(s)
- Tobias Schwabe
- Center for Bioinformatics and Physical Chemistry Institute, University of Hamburg , Bundesstraße 43, D-20146 Hamburg, Germany
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
22
|
Sancho-García JC, Pérez-Jiménez ÁJ, Savarese M, Brémond É, Adamo C. Determining the role of the underlying orbital-dependence of PBE0-DH and PBE-QIDH double-hybrid density functionals. J Comput Chem 2017; 38:1509-1514. [DOI: 10.1002/jcc.24788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Marika Savarese
- D3-Compunet; CompuNet, Istituto Italiano di Tecnologia; via Morego 30 Genoa I-16163 Italy
| | - Éric Brémond
- D3-Compunet; CompuNet, Istituto Italiano di Tecnologia; via Morego 30 Genoa I-16163 Italy
| | - Carlo Adamo
- D3-Compunet; CompuNet, Istituto Italiano di Tecnologia; via Morego 30 Genoa I-16163 Italy
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, F-75005 Paris; France
| |
Collapse
|
23
|
Sancho-García JC, Brémond É, Savarese M, Pérez-Jiménez AJ, Adamo C. Partnering dispersion corrections with modern parameter-free double-hybrid density functionals. Phys Chem Chem Phys 2017; 19:13481-13487. [DOI: 10.1039/c7cp00709d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The PBE-QIDH and SOS1-PBE-QIDH double-hybrid density functionals are merged with a pair of dispersion corrections, namely the pairwise additive D3(BJ) and the non-local correlation functional VV10, leading to the corresponding dispersion-corrected models.
Collapse
Affiliation(s)
| | - É. Brémond
- CompuNet
- Istituto Italiano di Tecnologia
- I-16163 Genoa
- Italy
| | - M. Savarese
- CompuNet
- Istituto Italiano di Tecnologia
- I-16163 Genoa
- Italy
| | | | - C. Adamo
- CompuNet
- Istituto Italiano di Tecnologia
- I-16163 Genoa
- Italy
- Institut de Recherche de Chimie Paris
| |
Collapse
|
24
|
Penocchio E, Mendolicchio M, Tasinato N, Barone V. Structural features of the carbon-sulfur chemical bond: a semi-experimental perspective. CAN J CHEM 2016; 94:1065-1076. [PMID: 28912608 PMCID: PMC5595238 DOI: 10.1139/cjc-2016-0282] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work semi-experimental and theoretical equilibrium geometries of 10 sulfur-containing organic molecules, as well as 4 oxygenated ones, are determined by means of a computational protocol based on density functional theory. The results collected in the present paper further enhance our online database of accurate semi-experimental equilibrium molecular geometries, adding 13 new molecules containing up to 8 atoms, for 12 of which the first semi-experimental equilibrium structure is reported, to the best of our knowledge. We focus in particular on sulfur-containing compounds, aiming both to provide new accurate data on some rather important chemical moieties, only marginally represented in the literature of the field, and to examine the structural features of carbon-sulfur bonds in the light of the previously presented linear regression approach. The structural changes issuing from substitution of oxygen by sulfur are discussed to get deeper insights on how modifications in electronic structure and nuclear potential can affect equilibrium geometries. With respect to our previous works, we perform non-linear constrained optimizations of equilibrium SE structures with a new general and user-friendly software under development in our group with updated definition of useful statistical indicators.
Collapse
|
25
|
Margraf JT, Verma P, Bartlett RJ. Ionization potential optimized double-hybrid density functional approximations. J Chem Phys 2016; 145:104106. [DOI: 10.1063/1.4962354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johannes T. Margraf
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Prakash Verma
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
26
|
Brémond E, Ciofini I, Sancho-García JC, Adamo C. Nonempirical Double-Hybrid Functionals: An Effective Tool for Chemists. Acc Chem Res 2016; 49:1503-13. [PMID: 27494122 DOI: 10.1021/acs.accounts.6b00232] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (DFT) emerged in the last two decades as the most reliable tool for the description and prediction of properties of molecular systems and extended materials, coupling in an unprecedented way high accuracy and reasonable computational cost. This success rests also on the development of more and more performing density functional approximations (DFAs). Indeed, the Achilles' heel of DFT is represented by the exchange-correlation contribution to the total energy, which, being unknown, must be approximated. Since the beginning of the 1990s, global hybrids (GH) functionals, where an explicit dependence of the exchange-correlation energy on occupied Kohn-Sham orbitals is introduced thanks to a fraction of Hartree-Fock-like exchange, imposed themselves as the most reliable DFAs for chemical applications. However, if these functionals normally provide results of sufficient accuracy for most of the cases analyzed, some properties, such as thermochemistry or dispersive interactions, can still be significantly improved. A possible way out is represented by the inclusion, into the exchange-correlation functional, of an explicit dependence on virtual Kohn-Sham orbitals via perturbation theory. This leads to a new class of functionals, called double-hybrids (DHs). In this Account, we describe our nonempirical approach to DHs, which, following the line traced by the Perdew-Burke-Ernzerhof approach, allows for the definition of a GH (PBE0) and a DH (QIDH) model. In such a way, a whole family of nonempirical functionals, spanning on the highest rungs of the Perdew's quality scale, is now available and competitive with other-more empirical-DFAs. Discussion of selected cases, ranging from thermochemistry and reactions to weak interactions and excitation energies, not only show the large range of applicability of nonempirical DFAs, but also underline how increasing the number of theoretical constraints parallels with an improvement of the DFA's numerical performances. This fact further consolidates the strong theoretical framework of nonempirical DFAs. Finally, even if nonempirical DH approaches are still computationally expensive, relying on the fact that they can benefit of all technical enhancements developed for speeding up post-Hartree-Fock methods, there is substantial hope for their near future routine application to the description and prediction of complex chemical systems and reactions.
Collapse
Affiliation(s)
- Eric Brémond
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa, Italy
| | - Ilaria Ciofini
- Institut de Recherche
de Chimie Paris, PSL Research University, CNRS, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | - Carlo Adamo
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa, Italy
- Institut de Recherche
de Chimie Paris, PSL Research University, CNRS, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
27
|
Alipour M. Seeking for Spin-Opposite-Scaled Double-Hybrid Models Free of Fitted Parameters. J Phys Chem A 2016; 120:3726-30. [PMID: 27163506 DOI: 10.1021/acs.jpca.6b03406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the basis of theoretical arguments, a new exchange-correlation energy expression free of any fitted parameter has been proposed for spin-opposite-scaled double-hybrid density functionals (SOS0-DHs). Employing the recently presented DHs, the working expressions for SOS0-DH functionals are obtained and benchmarked numerically against several standard databases. Our test calculations show that for some cases such as interaction energies and barrier heights the SOS0-DHs without dispersion corrections perform better than their non-SOS counterparts. On the other hand, for other properties like atomization energies, the conventional DHs provide reliable results. We hope that the findings of this work can excite further developments of DH functionals in the framework of SOS scheme for a wide variety of applications resolving the failures at a reasonable computational cost. It seems that a bright future lies ahead in this arena.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University , Shiraz, Iran
| |
Collapse
|
28
|
Brémond É, Savarese M, Sancho-García JC, Pérez-Jiménez ÁJ, Adamo C. Quadratic integrand double-hybrid made spin-component-scaled. J Chem Phys 2016; 144:124104. [DOI: 10.1063/1.4944465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Éric Brémond
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa, Italy
| | - Marika Savarese
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa, Italy
| | | | | | - Carlo Adamo
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa, Italy
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris IRCP, F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|