1
|
Yin C, Yu L, Feng L, Zhou JT, Du C, Shao X, Cheng Y. Nanotoxicity of two-dimensional nanomaterials on human skin and the structural evolution of keratin protein. NANOTECHNOLOGY 2024; 35:225101. [PMID: 38387099 DOI: 10.1088/1361-6528/ad2c58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Two-dimensional (2D) materials have been increasingly widely used in biomedical and cosmetical products nowadays, yet their safe usage in human body and environment necessitates a comprehensive understanding of their nanotoxicity. In this work, the effect of pristine graphene and graphene oxide (GO) on the adsorption and conformational changes of skin keratin using molecular dynamics simulations. It is found that skin keratin can be absorbed through various noncovalent driving forces, such as van der Waals (vdW) and electrostatics. In the case of GO, the oxygen-containing groups prevent tighter contact between skin keratin and the graphene basal plane through steric effects and electrostatic repulsion. On the other hand, electrostatic attraction and hydrogen bonding enhance their binding affinity to positively charged residues such as lysine and arginine. The secondary structure of skin keratin is better preserved in GO system, suggesting that GO has good biocompatibility. The charged groups on GO surface perform as the hydrogen bond acceptors, which is like to the natural receptors of keratin in this physiological environment. This work contributes to a better knowledge of the nanotoxicity of cutting-edge 2D materials on human health, thereby advancing their potential biological applications.
Collapse
Affiliation(s)
- Changji Yin
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Lei Yu
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou 550002, People's Republic of China
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
| | - Joey Tianyi Zhou
- Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chunbao Du
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, People's Republic of China
| | - Xiaoshan Shao
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou 550002, People's Republic of China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Luo Y, Gu Z, Liao W, Huang Y, Perez-Aguilar JM, Luo Y, Chen L. Villin headpiece unfolding upon binding to boridene mediated by the "anchoring-perturbation" mechanism. iScience 2024; 27:108577. [PMID: 38170080 PMCID: PMC10758975 DOI: 10.1016/j.isci.2023.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
We employ molecular dynamics (MD) simulations to investigate the influence of boridene on the behavior of a protein model, HP35, with the aim of assessing the potential biotoxicity of boridene. Our MD results reveal that HP35 can undergo unfolding via an "anchoring-perturbation" mechanism upon adsorption onto the boridene surface. Specifically, the third helix of HP35 becomes tightly anchored to the boridene surface through strong electrostatic interactions between the abundant molybdenum atoms on the boridene surface and the oxygen atoms on the HP35 backbone. Meanwhile, the first helix, experiencing continuous perturbation from the surrounding water solution over an extended period, suffers from potential breakage of hydrogen bonds, ultimately resulting in its unfolding. Our findings not only propose, for the first time to our knowledge, the "anchoring-perturbation" mechanism as a guiding principle for protein unfolding but also reveal the potential toxicity of boridene on protein structures.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, Guangdong Province 518110, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Weihua Liao
- Department of Radiology, Guangzhou Nansha District Maternal and Child Health Hospital, No. 103, Haibang Road, Nansha District, Guangzhou, Guangdong Province 511457, China
| | - Yiwen Huang
- Department of Emergency, Nansha Hospital, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Yanbo Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, Guangdong Province 518110, China
| | - Longzhen Chen
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, Guangdong Province 518110, China
| |
Collapse
|
3
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Int J Mol Sci 2022; 23:ijms232415957. [PMID: 36555599 PMCID: PMC9782655 DOI: 10.3390/ijms232415957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Collapse
|
5
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
6
|
Pham LN, Walsh TR. Predicting biomolecule adsorption on MoS 2 nanosheets with high structural fidelity. Chem Sci 2022; 13:5186-5195. [PMID: 35655578 PMCID: PMC9093178 DOI: 10.1039/d1sc06814h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
A new force field, MoSu-CHARMM, for the description of bio-interfacial structures at the aqueous MoS2 interface is developed, based on quantum chemical data. The force field describes non-covalent interactions between the MoS2 surface and a wide range of chemistries including hydrocarbon, alcohol, aldehyde, ketone, carboxylic acid, amine, thiol, and amino acid groups. Density functional theory (DFT), using the vdW-DF2 functional, is employed to create training and validation datasets, comprising 330 DFT binding energies for 21 organic compounds. Development of MoSu-CHARMM is guided by two criteria: (i) minimisation of energetic differences compared to target DFT data and (ii) preservation of the DFT energetic rankings of the different binding configurations. Force-field performance is validated against existing high-quality structural experimental data regarding adsorption of four 26-residue peptides at the aqueous MoS2 interface. Adsorption free energies for all twenty amino acids in liquid water are calculated to provide guidance for future peptide design, and interpret the properties of existing experimentally-identified MoS2-binding peptides. This force field will enable large-scale simulations of biological interactions with MoS2 surfaces in aqueous media where an emphasis on structural fidelity is prioritised.
Collapse
Affiliation(s)
- Le Nhan Pham
- Institute for Frontier Materials, Deakin University Geelong Victoria 3216 Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University Geelong Victoria 3216 Australia
| |
Collapse
|
7
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
8
|
Mild adsorption of carbon nitride (C 3N 3) nanosheet on a cellular membrane reveals its suitable biocompatibility. Colloids Surf B Biointerfaces 2021; 205:111896. [PMID: 34098364 DOI: 10.1016/j.colsurfb.2021.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/22/2022]
Abstract
Recently, the novel hole-containing carbon nitride C3N3 nanomaterial was successfully synthesized, featuring outstanding and unique mechanical and electrical properties. However, to fully exploit this nanomaterial in biomedical applications, information regarding its biocompatibility is necessary. Herein, by using all-atom molecular dynamics simulations, we evaluate the interactions between a C3N3 nanosheet and a critical cellular component, that is, a lipid membrane bilayer. Our results indicate that the C3N3 nanosheet is able to interact with the lipid bilayer surface without affecting the membrane's structural integrity. Moreover, our results showed that the C3N3 nanosheet is adsorbed on the surface of the lipid bilayer without inflicting any structural damage to the membrane, regardless of the conditions of the system (that is, with and without restrains in the C3N3 nanosheet). Also, we found that both energy contributions, namely vdW and Coulomb energies, conjointly mediated the C3N3 adsorption process. In comparison and as expected, pristine graphene significantly disturbed the membrane structure. Perpendicularly-oriented-sheet simulations described the significance of the surface charges of the C3N3 nanosheet in prohibiting its insertion into the membrane. Detailed analysis indicated that the electrostatic attraction between the pores in the C3N3 structure and the lipid head amino groups stabilized the interaction restricting the insertion of the C3N3 structure deeper into the membrane. Our results suggested the importance of the negatively charged C3N3 pores when interacting with lipid membranes. Our findings shed light on the potential compatibility of C3N3 with biomembranes and its underlying molecular mechanism, which might provide a useful foundation for the future exploration of this 2D nanomaterial in biomedical applications.
Collapse
|
9
|
Meng Y, Liu R, Song L, Zhu M, Zhai H, Ren C. Exploring the effect of silicene monolayer on the structure and function of villin headpiece and amyloid fibrils by molecular dynamics simulations. Proteins 2021; 89:107-115. [PMID: 32860260 DOI: 10.1002/prot.25998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
With the development of various nanomaterial expected to be used in biomedical fields, it is more important to evaluate and understand their potential effects on biological system. In this work, two proteins with different structure, Villin Headpiece (HP35) with α-helix structure and protofibrils Aβ1-42 with five β-strand chains, were selected and their interactions with silicene were studied by means of molecular dynamics (MD) simulation to reveal the potential effect of silicene on the structure and function of biomolecules. The obtained results indicated that silicene could rapidly attract HP35 and Aβ1-42 fibrils onto the surface to form a stable binding. The adsorption strength was moderate and no significant structural distortion of HP35 and Aβ1-42 fibrils was observed. Moreover, the strength of calculated the H-bonds in neighbor chain of Aβ1-42 fibrils indicated that the mild interactions between silicene and fibrils could regularize the structure of Aβ1-42 fibrils and stabilize the interactions between five chains of fibrils protein, which might enhance the aggregation of Aβ1-42 fibrils. This study provides a new insight for understanding the interaction between nanomaterials and biomolecules and moves forward the development of silicene into biomedical fields.
Collapse
Affiliation(s)
- Yajie Meng
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ruirui Liu
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Liting Song
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Min Zhu
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Honglin Zhai
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Cuiling Ren
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Sobańska Z, Domeradzka-Gajda K, Szparaga M, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Zapór L, Kowalczyk K, Stępnik M. Comparative analysis of biological effects of molybdenum(IV) sulfide in the form of nano- and microparticles on human hepatoma HepG2 cells grown in 2D and 3D models. Toxicol In Vitro 2020; 68:104931. [PMID: 32640262 DOI: 10.1016/j.tiv.2020.104931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Significance of MoS2 nanoparticles as a lubricant or drug carriers indicates the need to assess their safety. In the study we analyzed the effects of MoS2 nano- and microparticles and their internalization in vitro, using 2D and 3D culture models of human hepatoma HepG2 cell line. MoS2 micro- and nanoparticles were characterized with high resolution electron microscopy (HR-SEM), X-ray diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The cells were exposed to a range of concentrations of the nano-and microparticles suspensions (maximum of 250 μg/mL) for 72 h. Cell viability was assessed using WST-1 reduction test and LDH release assay. Particle internalization was analyzed using scanning transmission electron microscopy (STEM). The nanoparticles were internalized into the 2D and 3D cultured cells, in spheroids more efficiently into the outer layer. For microparticles mainly particles of less than 1 μm in diameter underwent internalization. This process, however, did not affect cell viability as measured with the WST-1 and LDH assays. STEM observation showed well preserved integrity of the cell membrane and no apparent cytotoxic effect. Although the particles seemed to be safely sequestered in vacuoles or the cytoplasm, their fate and eventual biological effects are not certain and deserve further studies.
Collapse
Affiliation(s)
- Z Sobańska
- Toxicology and Carcinogenesis Dept., Nofer Institute of Occupational Medicine, Sw. Teresy 8 St, Łódź, Poland
| | - K Domeradzka-Gajda
- Toxicology and Carcinogenesis Dept., Nofer Institute of Occupational Medicine, Sw. Teresy 8 St, Łódź, Poland
| | - M Szparaga
- Toxicology and Carcinogenesis Dept., Nofer Institute of Occupational Medicine, Sw. Teresy 8 St, Łódź, Poland
| | - J Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska St, Łódź 90-236, Poland
| | - E Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska St, Łódź 90-236, Poland
| | - K Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska St, Łódź 90-236, Poland
| | - G Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska St, Łódź 90-236, Poland
| | - L Zapór
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16 St, Warsaw, Poland
| | - K Kowalczyk
- Toxicology and Carcinogenesis Dept., Nofer Institute of Occupational Medicine, Sw. Teresy 8 St, Łódź, Poland
| | - M Stępnik
- Toxicology and Carcinogenesis Dept., Nofer Institute of Occupational Medicine, Sw. Teresy 8 St, Łódź, Poland.
| |
Collapse
|
11
|
He Z, Zhou R. Planar graphene/h-BN/graphene heterostructures for protein stretching and confinement. NANOSCALE 2020; 12:13822-13828. [PMID: 32572421 DOI: 10.1039/d0nr02271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein stretching and confinement in nanochannels is critical for advancing single-molecule detection techniques. For standard nanochannels integrated with nano-sensors, reducing their cross-section is beneficial for reading highly localized signals with minimal error, but results in increasing difficulty for the initial capture of any chain molecules due to the entropy barrier. Using molecular dynamics simulations, we show that spontaneous protein stretching can be realized by a two-dimensional (2D) heterostructure composed of a hexagonal boron nitride (h-BN) nanoribbon stitched with two graphene (GRA) sheets (i.e., a sandwiched GRA/BN/GRA structure). Due to fast protein diffusion on its flat surface and adsorption potential difference between two 2D materials, this planar nanochannel permits effective capture and elongation of three representative intrinsically disordered proteins including amyloid-β (1-42), polyglutamine (42) and α-synuclein (61-95). Moreover, we found that the extremely narrow h-BN stripe can provide stronger confinement for a longer polyglutamine chain after being stretched. Our approach has the potential to facilitate the bona fide readout of single-molecule protein sequencing techniques.
Collapse
Affiliation(s)
- Zhi He
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027, China.
| | | |
Collapse
|
12
|
Goloveshkin AS, Lenenko ND, Korlyukov AA, Golub AS. Probing Hydrogen-Bonding Properties of a Negatively Charged MoS 2 Monolayer by Powder X-ray Diffraction and Density Functional Theory Calculations. ACS OMEGA 2020; 5:4603-4610. [PMID: 32274465 PMCID: PMC7138535 DOI: 10.1021/acsomega.9b04161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The contributions of various noncovalent interactions in stabilization of the assembled and delaminated MoS2-hexamethylenetetramine (HMTA)-layered compound resulted from the assembly of protonated HMTA molecules and negatively charged 1T-MoS2 monolayers have been considered on the basis of powder X-ray diffraction pattern modeling, density functional theory calculations, and atoms in molecules quantum theory analysis. The structure with HMTA cations involved in NH···S bonding with MoS2 layers was concluded to be more advantageous than the alternative one with NH···N bonding between the cations. Delamination was demonstrated to essentially influence the hierarchy of interactions and leads to significant strengthening of the NH···S hydrogen bond established between HMTA and the MoS2 monolayer surface. The method applied in this study for evaluation of the monolayer MoS2 properties on the basis of the 3D structure of the MoS2-organic compound is expected to be helpful to gain insights into the interactions occurring in many MoS2-based systems.
Collapse
|
13
|
Yuan P, Zhou Q, Hu X. WS 2 Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1698-1709. [PMID: 31916439 DOI: 10.1021/acs.est.9b05537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Emerging transition-metal dichalcogenide (TMDC) nanosheets, such as WS2 nanosheets, have shown tremendous potential for use in many fields such as intelligent manufacturing and environmental protection. However, considerable knowledge gaps still exist regarding the impact of TMDCs on environmental risks, especially risks involving organic pollutants. Here, a synergistic toxicity between WS2 nanosheets and organic pollutants (triclosan or tris(1,3-dichloro-2-propyl) phosphate) was found using the median-effect and combination index equations. In particular, the effect of synergy had a higher magnitude at low cytotoxicity levels and a noncytotoxic concentration of WS2 nanosheets clearly enhanced the cytotoxicity and intracellular accumulation of organic pollutants. On the one hand, WS2 nanosheets damaged the plasma membrane and cytoskeleton, resulting in increased membrane permeability and organic pollutant uptake. On the other hand, as shown by fluorescence substrate accumulation experiments and molecular dynamics simulations, WS2 nanosheets affected the secondary structure of the efflux pumps and competitively bound with efflux pumps, blocking xenobiotic removal. This work emphasized that TMDCs, especially at the noncytotoxic level, in combination with organic pollutants caused damage that cannot be ignored, providing insight into comprehensive safety assessment and the specific toxicological mechanisms of TMDCs that accompany organic pollutant exposure.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
14
|
Walsh TR, Knecht MR. Biomolecular Material Recognition in Two Dimensions: Peptide Binding to Graphene, h-BN, and MoS 2 Nanosheets as Unique Bioconjugates. Bioconjug Chem 2019; 30:2727-2750. [PMID: 31593454 DOI: 10.1021/acs.bioconjchem.9b00593] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional nanosheet-based materials such as graphene, hexagonal boron nitride, and MoS2 represent intriguing structures for a variety of biological applications ranging from biosensing to nanomedicine. Recent advances have demonstrated that peptides can be identified with affinity for these three materials, thus generating a highly unique bioconjugate interfacial system. This Review focuses on recent advances in the formation of bioconjugates of these types, paying particular attention to the structure/function relationship of the peptide overlayer. This is achieved through the amino acid composition of the nanosheet binding peptides, thus allowing for precise control over the properties of the final materials. Such bioconjugate systems offer rapid advances via direct property control that remain difficult to achieve for biological applications using nonbiological approaches.
Collapse
Affiliation(s)
- Tiffany R Walsh
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 VIC , Australia
| | - Marc R Knecht
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States.,Dr. J.T. Macdonald Foundation Biomedical Nanotechnology Institute , University of Miami , UM Life Science Technology Building, 1951 NW Seventh Ave, Suite 475 , Miami , Florida 33136 , United States
| |
Collapse
|
15
|
Ma M, Wang Y, Gao N, Liu X, Sun Y, Ren J, Qu X. A Near-Infrared-Controllable Artificial Metalloprotease Used for Degrading Amyloid-β Monomers and Aggregates. Chemistry 2019; 25:11852-11858. [PMID: 31361361 DOI: 10.1002/chem.201902828] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Proteolysis of amyloid-β (Aβ) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aβ are usually embedded inside the β-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS2 -Co) using a molybdenum disulfide nanosheet (MoS2 ) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS2 -Co can circumvent the restriction by simultaneously inhibition of β-sheet formation and destroying β-sheet structures of the preformed Aβ aggregates in living cell. Furthermore, our designed MoS2 -Co is an easy to graft Aβ-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Ying Wang
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xinping Liu
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
16
|
Alexaki K, Kostopoulou A, Sygletou M, Kenanakis G, Stratakis E. Unveiling the Structure of MoS x Nanocrystals Produced upon Laser Fragmentation of MoS 2 Platelets. ACS OMEGA 2018; 3:16728-16734. [PMID: 31458302 PMCID: PMC6643385 DOI: 10.1021/acsomega.8b01390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Transition-metal dichalcogenide MoS2 nanostructures have attracted tremendous attention due to their unique properties, which render them efficient nanoscale functional components for multiple applications ranging from sensors and biomedical probes to energy conversion and storage devices. However, despite the wide application range, the possibility to tune their size, shape, and composition is still a challenge. At the same time, the correlation of the structure with the optoelectronic properties is still unresolved. Here, we propose a new method to synthesize various morphologies of molybdenum sulfide nanocrystals, on the basis of ultrashort-pulsed laser fragmentation of MoS2 platelets. Depending on the irradiation conditions, multiple MoS x morphologies in the form of nanoribbons, nanospheres, and photoluminescent quantum dots are obtained. Besides the detailed structural analysis of the various crystals formed, the structure-property relation is investigated and discussed.
Collapse
|
17
|
Song X, Lu L, Wei M, Dai Z, Wang S. Molecular dynamics simulations on the water flux in different two-dimension materials. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1510179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xinyi Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, P.R. People’s Republic of China
| | - Linghong Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, P.R. People’s Republic of China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, P.R. People’s Republic of China
| | - Zhongyang Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, P.R. People’s Republic of China
| | - Shanshan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, P.R. People’s Republic of China
| |
Collapse
|
18
|
Chan SSY, Tan YS, Wu KX, Cheung C, Loke DK. Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials. ACS APPLIED BIO MATERIALS 2018; 1:210-215. [PMID: 35016385 DOI: 10.1021/acsabm.8b00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We observed a unique bioelectric signal of human embryonic stem cells using direct current-voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell reading cycles demonstrating I ∼ 1.9 mA. Native stem cell proliferation, viability, and pluripotency were preserved. Molecular dynamics simulations elucidated the origin of the 2D-MoS2 sheet-assisted increase in current flow. This paves the way for the development of a broadly applicable, fast, and damage-free stem cell detection method capable of identifying pluripotency with virtually any complementary-metal-oxide-semiconductor circuits.
Collapse
Affiliation(s)
- Sophia S Y Chan
- Science Faculty, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Kan-Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Desmond K Loke
- Science Faculty, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
19
|
Huang W, Sunami Y, Kimura H, Zhang S. Applications of Nanosheets in Frontier Cellular Research. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E519. [PMID: 30002280 PMCID: PMC6070807 DOI: 10.3390/nano8070519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
Abstract
Several types of nanosheets, such as graphene oxide (GO) nanosheet, molybdenum disulfide (MoS₂) and poly(l-lactic acid) (PLLA) nanosheets, have been developed and applied in vitro in cellular research over the past decade. Scientists have used nanosheet properties, such as ease of modification and flexibility, to develop new cell/protein sensing/imaging techniques and achieve regulation of specific cell functions. This review is divided into three main parts based on the application being examined: nanosheets as a substrate, nanosheets as a sensitive surface, and nanosheets in regenerative medicine. Furthermore, the applications of nanosheets are discussed, with two subsections in each section, based on their effects on cells and molecules. Finally, the application prospects of nanosheets in cellular research are summarized.
Collapse
Affiliation(s)
- Wenjing Huang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yuta Sunami
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| | - Sheng Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Division of Biomedical Engineering, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Yang Y, Gong B, Yang Y, Xie A, Shen Y, Zhu M. Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like Fe 3O 4@MoS 2@ZnO drug carriers. J Mater Chem B 2018; 6:3792-3799. [PMID: 32254841 DOI: 10.1039/c8tb00608c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel cabbage-like Fe3O4@MoS2@ZnO nanocomposite was successfully fabricated through a facile method. The as-prepared nanocomposite exhibited a saturation magnetization of 45 emu g-1 as well as possessed a massive pore structure and large surface area, leading to a high DOX loading capacity of 68.14 μg mg-1; it could effectively deliver drugs to tumor lesion sites under the action of magnetic targeting. The pH-dependent ZnO as a packaging component can block the pores to achieve controlled release of DOX under tumor stimulation conditions (pH 6.5), thereby reducing the side effects of DOX on normal cells and increasing its therapy effects on tumor cells. Moreover, the photothermal conversion efficiency contributed by MoS2 under 808 nm NIR laser irradiation was utilized to realize effective photothermal therapy (PTT) of cancer, which could be integrated with chemotherapy in a single system. Thus, the resulting Fe3O4@MoS2@ZnO nanocomposites provide hopeful prospects in biomedical applications based on pH sensitivity, magnetic targeting and chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Yongmei Yang
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Modern Bio-Manufacture, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Adsorption patterns of aromatic amino acids on monolayer MoS 2 and Au-modified MoS 2 surfaces: A first-principles study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Lysozyme orientation and conformation on MoS 2 surface: Insights from molecular simulations. Biointerphases 2017; 12:02D416. [PMID: 28576080 DOI: 10.1116/1.4984803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two-dimensional molybdenum disulfide (MoS2) has attracted intense interest owing to its unique properties and promising biosensor applications. To develop effective biocompatible platforms, it is crucial to understand the interactions between MoS2 and biological molecules such as proteins, but little knowledge exists on the orientation and conformation of proteins on the MoS2 surface at the molecular level. In this work, the lysozyme adsorption on the MoS2 surface was studied by molecular dynamics simulations, wherein six different orientations were selected based on the different faces of lysozyme. Simulation results showed that lysozyme tends to adsorb on the MoS2 surface in an "end-on" orientation, indicating that orientations within this range are favorable for stable adsorption. The end-on orientation could be further categorized into "bottom end-on" and "top end-on" orientations. The driving forces responsible for the adsorption were dominated by van der Waals interactions and supplemented by electrostatic interactions. Further, the conformations of the lysozyme adsorbed on the MoS2 surface were basically preserved. This simulation study promotes the fundamental understanding of interactions between MoS2 and proteins and can guide the development of future biomedical applications of MoS2.
Collapse
|
23
|
Li B, Li W, Perez-Aguilar JM, Zhou R. Mild Binding of Protein to C 2 N Monolayer Reveals Its Suitable Biocompatibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603685. [PMID: 28139876 DOI: 10.1002/smll.201603685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/20/2016] [Indexed: 06/06/2023]
Abstract
The development of biocompatible nanomaterials for smart drug delivery and bioimaging has attracted great interest in recent years in biomedical fields. Here, the interaction between the recently reported nitrogenated graphene (C2 N) and a prototypical protein (villin headpiece HP35) utilizing atomistic molecular dynamics simulations is studied. The simulations reveal that HP35 can form a stable binding with the C2 N monolayer. Although the C2 N-HP35 attractive interactions are constantly preserved, the binding strength between C2 N and the protein is mild and does not cause significant distortion in the protein's structural integrity. This intrinsic biofriendly property of native C2 N is distinct from several widely studied nanomaterials, such as graphene, carbon nanotubes, and MoS2 , which can induce severe protein denaturation. Interestingly, once the protein is adsorbed onto C2 N surface, its transverse migration is highly restricted at the binding sites. This restriction is orchestrated by C2 N's periodic porous structure with negatively charged "holes," where the basic residues-such as lysine-can form stable interactions, thus functioning as "anchor points" in confining the protein displacement. It is suggested that the mild, immobilized protein attraction and biofriendly aspects of C2 N would make it a prospective candidate in bio- and medical-related applications.
Collapse
Affiliation(s)
- Baoyu Li
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Weifeng Li
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jose Manuel Perez-Aguilar
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
24
|
Leroy F. Revisiting the droplet simulation approach to derive force-field parameters for water on molybdenum disulfide from wetting angle measurements. J Chem Phys 2017; 145:164705. [PMID: 27802664 DOI: 10.1063/1.4966215] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.
Collapse
Affiliation(s)
- Frédéric Leroy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany and Institut für Chemie, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| |
Collapse
|
25
|
Gu Z, De Luna P, Yang Z, Zhou R. Structural influence of proteins upon adsorption to MoS2 nanomaterials: comparison of MoS2 force field parameters. Phys Chem Chem Phys 2017; 19:3039-3045. [DOI: 10.1039/c6cp05260f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide (MoS2) has recently emerged as a promising nanomaterial in a wide range of applications due to its unique and impressive properties.
Collapse
Affiliation(s)
- Zonglin Gu
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou
- China
| | - Phil De Luna
- Computational Biological Center
- IBM Thomas J. Watson Research Center
- Yorktown Heights
- USA
| | - Zaixing Yang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou
- China
| | - Ruhong Zhou
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou
- China
- Computational Biological Center
| |
Collapse
|