1
|
Qiu J, Liu Z, Xie J, Lan B, Shen Z, Shi H, Lin F, Shen X, Kou Y. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice. PLANT, CELL & ENVIRONMENT 2022; 45:3399-3411. [PMID: 36175003 DOI: 10.1111/pce.14452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Humidity is a critical environmental factor affecting the epidemic of plant diseases. However, it is still unclear how ambient humidity affects the occurrence of diseases in plants. In this study, we show that high ambient humidity enhanced blast development in rice plants under laboratory conditions. Furthermore, we found that high ambient humidity enhanced the virulence of Magnaporthe oryzae by promoting conidial germination and appressorium formation. In addition, the results of RNA-sequencing analysis and the ethylene content assessment revealed that high ambient humidity suppressed the accumulation of ethylene and the activation of ethylene signaling pathway induced by M. oryzae in rice. Knock out of ethylene signaling genes OsEIL1 and OsEIN2 or exogenous application of 1-methylcyclopropene (ethylene inhibitor) and ethephon (ethylene analogues) eliminated the difference of blast resistance between the 70% and 90% relative humidity conditions, suggesting that the activation of ethylene signaling contributes to humidity-modulated basal resistance against M. oryzae in rice. In conclusion, our results demonstrated that high ambient humidity enhances the virulence of M. oryzae and compromises basal resistance by reducing the activation of ethylene biosynthesis and signaling in rice. Results from this study provide cues for novel strategies to control rice blast under global environmental changes.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiquan Liu
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhui Xie
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Bo Lan
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenan Shen
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Yanjun Kou
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
2
|
Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:502-516. [PMID: 32954627 PMCID: PMC7957895 DOI: 10.1111/pbi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
Plants fight-off pathogens and pests by manifesting an array of defence responses using their innate immunity mechanisms. Here we report the identification of a novel soybean gene encoding a plasma membrane protein, transcription of which is suppressed following infection with the fungal pathogen, Fusarium virguliforme. Overexpression of the protein led to enhanced resistance against not only against F. virguliforme, but also against spider mites (Tetranychus urticae, Koch), soybean aphids (Aphis glycines, Matsumura) and soybean cyst nematode (Heterodera glycines). We, therefore, name this protein as Glycine max disease resistance 1 (GmDR1; Glyma.10g094800). The homologues of GmDR1 have been detected only in legumes, cocoa, jute and cotton. The deduced GmDR1 protein contains 73 amino acids. GmDR1 is predicted to contain an ecto- and two transmembrane domains. Transient expression of the green fluorescent protein fused GmDR1 protein in soybean leaves showed that it is a plasma membrane protein. We investigated if chitin, a pathogen-associated molecular pattern (PAMP), common to all pathogen and pests considered in this study, can significantly enhance defence pathways among the GmDR1-overexpressed transgenic soybean lines. Chitin induces marker genes of the salicylic- and jasmonic acid-mediated defence pathways, but suppresses the defence pathway regulated by ethylene. Chitin induced SA- and JA-regulated defence pathways may be one of the mechanisms involved in generating broad-spectrum resistance among the GmDR1-overexpressed transgenic soybean lines against two serious pathogens and two pests including spider mites, against which no known resistance genes have been identified in soybean and among the most other crop species.
Collapse
Affiliation(s)
| | | | - Bing Wang
- Department of AgronomyIowa State UniversityAmesIAUSA
- Present address:
Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | | |
Collapse
|
3
|
Wang JZ, Zhu LL, Zhang F, Herman RA, Li WJ, Zhou XJ, Wu FA, Wang J. Microfluidic tools for lipid production and modification: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35482-35496. [PMID: 31327140 DOI: 10.1007/s11356-019-05833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Microfluidics has great potential as an efficient tool for a large range of applications in industry. The ability of such devices to deal with an extremely small amount of fluid has additional benefits, including superlatively fast and efficient mass and heat transfer. These characteristics of microfluidics have attracted an enormous amount of interest in their use as a novel tool for lipid production and modification. In addition, lipid resources have a close relationship with energy resources, and lipids are an alternative renewable energy source. Here, recent advances in the application of microfluidics for lipid production and modification, especially in the discovery, culturing, harvesting, separating, and monitoring of lipid-producing microorganisms, will be reviewed. Other applications of microfluidics, such as the modification of lipids from microorganisms, will also be discussed. The novel microfluidic tools in this review will be useful in applications to improve lipid production and modification in the future.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Lin-Lin Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Fan Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Richard Ansah Herman
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Wen-Jing Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Xue-Jiao Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China.
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China.
| |
Collapse
|
4
|
Xu Z, Wang Y, Chen Y, Spalding MH, Dong L. Microfluidic chip for automated screening of carbon dioxide conditions for microalgal cell growth. BIOMICROFLUIDICS 2017; 11:064104. [PMID: 29204245 PMCID: PMC5699919 DOI: 10.1063/1.5012508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 11/06/2017] [Indexed: 05/27/2023]
Abstract
This paper reports on a microfluidic device capable of screening carbon dioxide (CO2) conditions for microalgal cell growth. The device mainly consists of a microfluidic cell culture (MCC) unit, a gas concentration gradient generator (CGG), and an in-line cell growth optical measurement unit. The MCC unit is structured with multiple aqueous-filled cell culture channels at the top layer, multiple CO2 flow channels at the bottom layer, and a commercial hydrophobic gas semipermeable membrane sandwiched between the two channel layers. The CGG unit provides different CO2 concentrations to support photosynthesis of microalgae in the culture channels. The integration of the commercial gas semipermeable membrane into the cell culture device allows rapid mass transport and uniform distribution of CO2 inside the culture medium without using conventional agitation-assisted convection methods, because the diffusion of CO2 from the gas flow channels to the culture channels is fast over a small length scale. In addition, automated in-line monitoring of microalgal cell growth is realized via the optical measurement unit that is able to detect changes in the light intensity transmitted through the cell culture in the culture channels. The microfluidic device also allows a simple grayscale analysis method to quantify the cell growth. The utility of the system is validated by growing Chlamydomonas reinhardtii cells under different low or very-low CO2 levels below the nominal ambient CO2 concentration.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Yuncong Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
5
|
Xu Z, Jiang H, Sahu BB, Kambakam S, Singh P, Wang X, Wang Q, Bhattacharyya MK, Dong L. Erratum: "Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput" [Biomicrofluidics 10, 034108 (2016)]. BIOMICROFLUIDICS 2016; 10:059901. [PMID: 27872675 PMCID: PMC5035295 DOI: 10.1063/1.4963386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
[This corrects the article DOI: 10.1063/1.4950998.].
Collapse
Affiliation(s)
- Zhen Xu
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, USA
| | - Huawei Jiang
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, USA
| | | | - Sekhar Kambakam
- Department of Agronomy, Iowa State University , Ames, Iowa 50011, USA
| | | | - Xinran Wang
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, USA
| | - Qiugu Wang
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, USA
| | | | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, USA
| |
Collapse
|