1
|
Creazzo F, Luber S. Water-air interface revisited by means of path-integral ab initio molecular dynamics. Phys Chem Chem Phys 2024; 26:21290-21302. [PMID: 39078670 PMCID: PMC11305098 DOI: 10.1039/d4cp02500h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024]
Abstract
Although nuclear quantum effects (NQEs) have been considered on bulk liquid water, the impact of these latter on the air-water interface has not yet been reported. Herein, by performing and comparing ab initio molecular dynamics (AIMD) and path integral AIMD (PI-AIMD) simulations, we reveal the impact of NQEs on structural, dynamical and electronic properties as well as IR spectra of the air-water interface at room temperature. NQEs, being able to describe a more accurate proton delocalization in H-bonded system than AIMD, reveal a different structural arrangement and dynamical behaviour of both bulk and interfacial water molecules in comparison to AIMD results. A more de-structured and de-bound water arrangement and coordination are identified when the quantum nature of nuclei are considered for both bulk and interfacial water molecules. Structural properties, such as inter-/intra-molecular bond lengths, coordination numbers and H-bonding angles of bulk and interfacial water molecules here calculated, are affected by NQEs mitigating the overstructured description given by AIMD. Further evidences of an AIMD overstructured description of bulk water are in the computed IR spectra, where an increased absorption peak intensity and an increased strength of the hydrogen-bond network are alleviated by NQEs. In addition, NQEs show a valuable impact on the electronic structure of the air-water interface, reducing the total valence bandwidth and the electronic energy band-gap when passing from bulk to interfacial water. This work proves how NQEs significantly affect properties and features of the air-water interface, that are essential to accurately describe H-bonded interfacial systems.
Collapse
Affiliation(s)
- Fabrizio Creazzo
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Morishita T, Shiga M. Ab Initio Characterization of the CO 2-Water Interface Using Unsupervised Machine Learning for Dimensionality Reduction. J Phys Chem B 2024; 128:5781-5791. [PMID: 38829554 DOI: 10.1021/acs.jpcb.4c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Precise characterization of the supercritical CO2-water interface under high pressure and temperature conditions is crucial for the geological storage of carbon dioxide (CO2) in deep saline aquifers. Molecular dynamics (MD) simulations offer a valuable approach to gaining insight into the CO2-water interface at a microscopic level. However, no attempt has been made to characterize the CO2-water interface with the accuracy afforded by ab initio calculations. In this study, we performed ab initio MD (AIMD) simulations to investigate the structural and dynamical properties of the CO2-water interface, comparing the results with those obtained from classical force-field MD (FF-MD) simulations. Molecular orientation at the interface was well reproduced in both AIMD and FF-MD simulations. Characteristic structural fluctuations of water at the interface were unveiled by applying multidimensional scaling and time-dependent principal component analysis to the AIMD trajectories; however, they were not prominent in the FF-MD simulations. Furthermore, our study demonstrated a marked difference in the residence time of molecules in the interface region between AIMD and FF-MD simulations, indicating that time-dependent properties of the CO2-water interface strongly depend on the description of the intermolecular forces.
Collapse
Affiliation(s)
- Tetsuya Morishita
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Masashige Shiga
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| |
Collapse
|
3
|
Ojha D, Henao A, Zysk F, Kühne TD. Nuclear quantum effects on the vibrational dynamics of the water-air interface. J Chem Phys 2024; 160:204114. [PMID: 38804494 DOI: 10.1063/5.0204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
We have applied path-integral molecular dynamics simulations to investigate the impact of nuclear quantum effects on the vibrational dynamics of water molecules at the water-air interface. The instantaneous fluctuations in the frequencies of the O-H stretch modes are calculated using the wavelet method of time series analysis, while the time scales of vibrational spectral diffusion are determined from frequency-time correlation functions and joint probability distributions. We find that the inclusion of nuclear quantum effects leads not only to a redshift in the vibrational frequency distribution by about 120 cm-1 for both the bulk and interfacial water molecules but also to an acceleration of the vibrational dynamics at the water-air interface by as much as 35%. In addition, a blueshift of about 45 cm-1 is seen in the vibrational frequency distribution of interfacial water molecules compared to that of the bulk. Furthermore, the dynamics of water molecules beyond the topmost molecular layer was found to be rather similar to that of bulk water.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Andrés Henao
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Advanced Systems Understanding (CASUS), Untermarkt 20, D-02826 Görlitz, Germany, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany, and TU Dresden, Institute of Artificial Intelligence, Chair of Computational System Sciences, Nöthnitzer Straße 46, D-01187 Dresden, Germany
| |
Collapse
|
4
|
Balicki M, Śmiechowski M. Hydration of N-Hydroxyurea from Ab Initio Molecular Dynamics Simulations. Molecules 2024; 29:2435. [PMID: 38893311 PMCID: PMC11173572 DOI: 10.3390/molecules29112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
N-Hydroxyurea (HU) is an important chemotherapeutic agent used as a first-line treatment in conditions such as sickle cell disease and β-thalassemia, among others. To date, its properties as a hydrated molecule in the blood plasma or cytoplasm are dramatically understudied, although they may be crucial to the binding of HU to the radical catalytic site of ribonucleotide reductase, its molecular target. The purpose of this work is the comprehensive exploration of HU hydration. The topic is studied using ab initio molecular dynamic (AIMD) simulations that apply a first principles representation of the electron density of the system. This allows for the calculation of infrared spectra, which may be decomposed spatially to better capture the spectral signatures of solute-solvent interactions. The studied molecule is found to be strongly hydrated and tightly bound to the first shell water molecules. The analysis of the distance-dependent spectra of HU shows that the E and Z conformers spectrally affect, on average, 3.4 and 2.5 of the closest H2O molecules, respectively, in spheres of radii of 3.7 Å and 3.5 Å, respectively. The distance-dependent spectra corresponding to these cutoff radii show increased absorbance in the red-shifted part of the water OH stretching vibration band, indicating local enhancement of the solvent's hydrogen bond network. The radially resolved IR spectra also demonstrate that HU effortlessly incorporates into the hydrogen bond network of water and has an enhancing effect on this network. Metadynamics simulations based on AIMD methodology provide a picture of the conformational equilibria of HU in solution. Contrary to previous investigations of an isolated HU molecule in the gas phase, the Z conformer of HU is found here to be more stable by 17.4 kJ·mol-1 than the E conformer, pointing at the crucial role that hydration plays in determining the conformational stability of solutes. The potential energy surface for the OH group rotation in HU indicates that there is no intramolecular hydrogen bond in Z-HU in water, in stark contrast to the isolated solute in the gas phase. Instead, the preferred orientation of the hydroxyl group is perpendicular to the molecular plane of the solute. In view of the known chaotropic effect of urea and its N-alkyl-substituted derivatives, N-hydroxyurea emerges as a unique urea derivative that exhibits a kosmotropic ordering of nearby water. This property may be of crucial importance for its binding to the catalytic site of ribonucleotide reductase with a concomitant displacement of a water molecule.
Collapse
Affiliation(s)
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
5
|
Höfling F, Dietrich S. Structure of liquid-vapor interfaces: Perspectives from liquid state theory, large-scale simulations, and potential grazing-incidence x-ray diffraction. J Chem Phys 2024; 160:104107. [PMID: 38469908 DOI: 10.1063/5.0186955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Grazing-incidence x-ray diffraction (GIXRD) is a scattering technique that allows one to characterize the structure of fluid interfaces down to the molecular scale, including the measurement of surface tension and interface roughness. However, the corresponding standard data analysis at nonzero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering from the bulk. Here, we overcome this ambiguity by proposing a physically consistent model of the bulk contribution based on a minimal set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpretation of GIXRD data inferred from computer simulations, we extend the model to account also for the finite sizes of the bulk phases, which are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the x-ray penetration depth in the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid-vapor interface of Lennard-Jones fluids with truncated pair interactions via extensive, high-precision computer simulations. The reported data cover interfacial and bulk properties of fluid states along the whole liquid-vapor coexistence line. A sensitivity analysis shows that our findings are robust with respect to the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at mesoscopic scales are amenable to unambiguous tests via scattering experiments.
Collapse
Affiliation(s)
- F Höfling
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 6, 14195 Berlin, Germany
- Zuse Institut Berlin, Takustr. 7, 14195 Berlin, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Liu KL, Xiao RL, Ruan Y, Wei B. Active learning prediction and experimental confirmation of atomic structure and thermophysical properties for liquid Hf_{76}W_{24} refractory alloy. Phys Rev E 2023; 108:055310. [PMID: 38115461 DOI: 10.1103/physreve.108.055310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023]
Abstract
The determination of liquid atomic structure and thermophysical properties is essential for investigating the physical characteristics and phase transitions of refractory alloys. However, due to the stringent experimental requirements and underdeveloped interatomic potentials, acquiring such information through experimentation or simulation remains challenging. Here, an active learning method incorporating a deep neural network was established to generate the interatomic potential of the Hf_{76}W_{24} refractory alloy. Then the achieved potential was applied to investigate the liquid atomic structure and thermophysical properties of this alloy over a wide temperature range. The simulation results revealed the distinctive bonding preferences among atoms, that is, Hf atoms exhibited a strong tendency for conspecific bonding, while W atoms preferred to form an interspecific bonding. The analysis of short-range order (SRO) in the liquid alloy revealed a significant proportion of icosahedral (ICO) and distorted ICO structures, which even exceeded 30% in the undercooled state. As temperature decreased, SRO structures demonstrated an increase in larger coordination number (CN) clusters and a decrease in smaller CNs. The alterations of the atomic structure indicated that the liquid alloy becomes more ordered, densely packed, and energetically favorable with decreasing temperature, consistent with the obtained fact: Both density and surface tension increase linearly. The simulated thermophysical properties were close to experimental values with minor deviations of 2.8% for density and 3.4% for surface tension. The consistency of the thermophysical properties further attested to the accuracy and reliability of active learning simulation.
Collapse
Affiliation(s)
- K L Liu
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - R L Xiao
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Y Ruan
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - B Wei
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
7
|
Małajowicz J, Khachatryan K, Oszczęda Z, Karpiński P, Fabiszewska A, Zieniuk B, Krysowaty K. The Effect of Plasma-Treated Water on Microbial Growth and Biosynthesis of Gamma-Decalactones by Yarrowia lipolytica Yeast. Int J Mol Sci 2023; 24:15204. [PMID: 37894885 PMCID: PMC10607521 DOI: 10.3390/ijms242015204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, the production of plasma-treated water (PTW) by low-temperature low-pressure glow plasma (LPGP) has been increasingly gaining in popularity. LPGP-treated water changes its physical and physiochemical properties compared to standard distilled water. In this study, a non-conventional lipolytic yeast species Yarrowia lipolytica was cultivated in culture media based on Nantes plasma water with heightened singlet oxygen content (Nantes PW) or in water treated with low-temperature, low-pressure glow plasma while in contact with air (PWTA) or nitrogen (PWTN). The research aimed to assess the influence of culture conditions on castor oil biotransformation to gamma-decalactone (GDL) and other secondary metabolites in media based on nanowater. The Nantes plasma water-based medium attained the highest concentration of gamma-decalactone (4.81 ± 0.51 g/L at 144 h of culture), maximum biomass concentration and biomass yield from the substrate. The amplified activity of lipases in the nanowater-based medium, in comparison to the control medium, is encouraging from the perspective of GDL biosynthesis, relying on the biotransformation of ricinoleic acid, which is the primary component of castor oil. Although lipid hydrolysis was enhanced, this step seemed not crucial for GDL concentration. Interestingly, the study validates the significance of oxygen in β-oxidation enzymes and its role in the bioconversion of ricinoleic acid to GDL and other lactones. Specifically, media with higher oxygen content (WPTA) and Nantes plasma water resulted in remarkably high concentrations of four lactones: gamma-decalactone, 3-hydroxy-gamma-decalactone, dec-2-en-4-olide and dec-3-en-4-olide.
Collapse
Affiliation(s)
- Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka Street 122, 30-149 Cracow, Poland;
| | - Zdzisław Oszczęda
- Nantes Nanotechnological Systems, Dolne Młyny Street 21, 59-700 Bolesławiec, Poland;
| | - Piotr Karpiński
- Faculty of Computer Science and Technology, Lomza State University of Applied Sciences, Akademicka Street 1, 18-400 Łomża, Poland;
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.)
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.)
| | - Konrad Krysowaty
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| |
Collapse
|
8
|
Wang X, Tse YLS. Flexible Polarizable Water Model Parameterized via Gaussian Process Regression. J Chem Theory Comput 2022; 18:7155-7165. [PMID: 36374554 DOI: 10.1021/acs.jctc.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water is one of the most common components in molecular dynamics (MD) simulations. Using Gaussian process regression for predicting the properties of a water model without the need of running a simulation whenever the parameters are changed, we obtained a flexible polarizable water model, named SWM4/Fw, that is able to reproduce many reference water properties. The added flexibility is critical for modeling chemical reactions in which chemical bonds can be stretched or even broken and for directly calculating vibrational spectra. In addition to being one of the few water models that are both flexible and polarizable, SWM4/Fw is also efficient thanks to the extended Lagrangian scheme with Drude oscillators. The overall accuracy is on par with or better than the related SWM4-NDP model.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong000000, China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong000000, China
| |
Collapse
|
9
|
Kumar Verma A, Govind Rajan A. Surface Roughness Explains the Observed Water Contact Angle and Slip Length on 2D Hexagonal Boron Nitride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9210-9220. [PMID: 35866875 DOI: 10.1021/acs.langmuir.2c00972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hexagonal boron nitride (hBN) is a two-dimensional (2D) material that is currently being explored in a number of applications, such as atomically thin coatings, water desalination, and biological sensors. In many of these applications, the hBN surface comes into intimate contact with water. In this work, we investigate the wetting and frictional behavior of realistic 2D hBN surfaces with atomic-scale defects and roughness. We combine density functional theory calculations of the charge distribution inside hBN with free energy calculations using molecular dynamics simulations of the hBN-water interface. We find that the presence of surface roughness, but not that of vacancy defects, leads to remarkable agreement with the experimentally observed water contact angle of 66° on freshly synthesized, uncontaminated hBN. Not only that, the inclusion of surface roughness predicts with exceptional accuracy the experimental water slip length of ∼1 nm on hBN. Our results underscore the importance of considering realistic models of 2D materials with surface roughness while modeling nanomaterial-water interfaces in molecular simulations.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
10
|
Yu CC, Imoto S, Seki T, Chiang KY, Sun S, Bonn M, Nagata Y. Accurate molecular orientation at interfaces determined by multimode polarization-dependent heterodyne-detected sum-frequency generation spectroscopy via multidimensional orientational distribution function. J Chem Phys 2022; 156:094703. [DOI: 10.1063/5.0081209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many essential processes occur at soft interfaces, from chemical reactions on aqueous aerosols in the atmosphere to biochemical recognition and binding at the surface of cell membranes. The spatial arrangement of molecules specifically at these interfaces is crucial for many of such processes. The accurate determination of the interfacial molecular orientation has been challenging due to the low number of molecules at interfaces and the ambiguity of their orientational distribution. Here, we combine phase- and polarization-resolved sum-frequency generation (SFG) spectroscopy to obtain the molecular orientation at the interface. We extend an exponentially decaying orientational distribution to multiple dimensions, which, in conjunction with multiple SFG datasets obtained from the different vibrational modes, allows us to determine the molecular orientation. We apply this new approach to formic acid molecules at the air–water interface. The inferred orientation of formic acid agrees very well with ab initio molecular dynamics data. The phase-resolved SFG multimode analysis scheme using the multidimensional orientational distribution thus provides a universal approach for obtaining the interfacial molecular orientation.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Sho Imoto
- Analysis Technology Center, Fujifilm R&D, 210 Nakanuma, Minamiashigara, Kanagawa 250-0123, Japan
| | - Takakazu Seki
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kuo-Yang Chiang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Shumei Sun
- Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, 100875 Beijing, China
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
11
|
Ojha D, Kühne TD. Hydrogen bond dynamics of interfacial water molecules revealed from two-dimensional vibrational sum-frequency generation spectroscopy. Sci Rep 2021; 11:2456. [PMID: 33510246 PMCID: PMC7844302 DOI: 10.1038/s41598-021-81635-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Vibrational sum-frequency generation (vSFG) spectroscopy allows the study of the structure and dynamics of interfacial systems. In the present work, we provide a simple recipe, based on a narrowband IR pump and broadband vSFG probe technique, to computationally obtain the two-dimensional vSFG spectrum of water molecules at the air-water interface. Using this technique, to study the time-dependent spectral evolution of hydrogen-bonded and free water molecules, we demonstrate that at the interface, the vibrational spectral dynamics of the free OH bond is faster than that of the bonded OH mode.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
- Paderborn Center for Parallel Computing and Institute for Lightweight Design, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
| |
Collapse
|
12
|
Absolute ion hydration free energy scale and the surface potential of water via quantum simulation. Proc Natl Acad Sci U S A 2020; 117:30151-30158. [PMID: 33203676 DOI: 10.1073/pnas.2017214117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With a goal of determining an absolute free energy scale for ion hydration, quasi-chemical theory and ab initio quantum mechanical simulations are employed to obtain an accurate value for the bulk hydration free energy of the Na+ ion. The free energy is partitioned into three parts: 1) the inner-shell or chemical contribution that includes direct interactions of the ion with nearby waters, 2) the packing free energy that is the work to produce a cavity of size λ in water, and 3) the long-range contribution that involves all interactions outside the inner shell. The interfacial potential contribution to the free energy resides in the long-range term. By averaging cation and anion data for that contribution, cumulant terms of all odd orders in the electrostatic potential are removed. The computed total is then the bulk hydration free energy. Comparison with the experimentally derived real hydration free energy produces an effective surface potential of water in the range -0.4 to -0.5 V. The result is consistent with a variety of experiments concerning acid-base chemistry, ion distributions near hydrophobic interfaces, and electric fields near the surface of water droplets.
Collapse
|
13
|
Ojha D, Kühne TD. "On-The-Fly" Calculation of the Vibrational Sum-Frequency Generation Spectrum at the Air-Water Interface. Molecules 2020; 25:E3939. [PMID: 32872259 PMCID: PMC7504776 DOI: 10.3390/molecules25173939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
In the present work, we provide an electronic structure based method for the "on-the-fly" determination of vibrational sum frequency generation (v-SFG) spectra. The predictive power of this scheme is demonstrated at the air-water interface. While the instantaneous fluctuations in dipole moment are obtained using the maximally localized Wannier functions, the fluctuations in polarizability are approximated to be proportional to the second moment of Wannier functions. The spectrum henceforth obtained captures the signatures of hydrogen bond stretching, bending, as well as low-frequency librational modes.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany;
| | - Thomas D. Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany;
- Paderborn Center for Parallel Computing and Institute for Lightweight Design, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|
14
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 997] [Impact Index Per Article: 249.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
15
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Ojha D, Kaliannan NK, Kühne TD. Time-dependent vibrational sum-frequency generation spectroscopy of the air-water interface. Commun Chem 2019. [DOI: 10.1038/s42004-019-0220-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Vibrational sum-frequency generation spectroscopy is a powerful method to study the microscopic structure and dynamics of interfacial systems. Here we demonstrate a simple computational approach to calculate the time-dependent, frequency-resolved vibrational sum-frequency generation spectrum (TD-vSFG) of the air-water interface. Using this approach, we show that at the air-water interface, the transition of water molecules with bonded OH modes to free OH modes occurs at a time scale of $$\sim$$
~
3 ps, whereas water molecules with free OH modes rapidly make a transition to a hydrogen-bonded state within $$\sim$$
~
2 ps. Furthermore, we also elucidate the origin of the observed differential dynamics based on the time-dependent evolution of water molecules in the different local solvent environments.
Collapse
|
17
|
Ohto T, Dodia M, Xu J, Imoto S, Tang F, Zysk F, Kühne TD, Shigeta Y, Bonn M, Wu X, Nagata Y. Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water-Air Interface. J Phys Chem Lett 2019; 10:4914-4919. [PMID: 31393136 PMCID: PMC6748669 DOI: 10.1021/acs.jpclett.9b01983] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/08/2019] [Indexed: 05/31/2023]
Abstract
Density functional theory-based molecular dynamics simulations are increasingly being used for simulating aqueous interfaces. Nonetheless, the choice of the appropriate density functional, critically affecting the outcome of the simulation, has remained arbitrary. Here, we assess the performance of various exchange-correlation (XC) functionals, based on the metrics relevant to sum-frequency generation spectroscopy. The structure and dynamics of water at the water-air interface are governed by heterogeneous intermolecular interactions, thereby providing a critical benchmark for XC functionals. We find that the XC functionals constrained by exact functional conditions (revPBE and revPBE0) with the dispersion correction show excellent performance. The poor performance of the empirically optimized density functional (M06-L) indicates the importance of satisfying the exact functional condition. Understanding the performance of different XC functionals can aid in resolving the controversial interpretation of the interfacial water structure and direct the design of novel, improved XC functionals better suited to describing the heterogeneous interactions in condensed phases.
Collapse
Affiliation(s)
- Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jianhang Xu
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fujie Tang
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frederik Zysk
- Dynamics
of Condensed Matter and Center for Sustainable Systems Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Thomas D. Kühne
- Dynamics
of Condensed Matter and Center for Sustainable Systems Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Yasuteru Shigeta
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xifan Wu
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Dodia M, Ohto T, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water-Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. J Chem Theory Comput 2019; 15:3836-3843. [PMID: 31074989 PMCID: PMC6750744 DOI: 10.1021/acs.jctc.9b00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
van der Waals (vdW) correction schemes
have been recognized to
be essential for an accurate description of liquid water in first-principles
molecular dynamics simulation. The description of the structure and
dynamics of water is governed by the type of the vdW corrections.
So far, two vdW correction schemes have been often used: empirical
vdW corrections and nonlocal vdW corrections. In this paper, we assess
the influence of the empirical vs nonlocal vdW correction schemes
on the structure and dynamics of water at the water–air interface.
Since the structure of water at the water–air interface is
established by a delicate balance of hydrogen bond formation and breaking,
the simulation at the water–air interface provides a unique
platform to testify as to the heterogeneous interaction of water.
We used the metrics [Ohto et al. , 2019, 15, 595−60230468702] which
are directly connected with the sum-frequency generation spectroscopic
measurement. We find that the overall performance of nonlocal vdW
methods is either similar or worse compared to the empirical vdW methods.
We also investigated the performance of the optB88-DRSLL functional,
which showed slightly less accuracy than the revPBE-D3 method. We
conclude that the revPBE-D3 method shows the best performance for
describing the interfacial water.
Collapse
Affiliation(s)
- Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka, Osaka 560-8531 , Japan
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
19
|
Liu J, Li X, Hou J, Li X, Lu Z. The Influence of Sodium Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution by a Combined Molecular Simulation and Sum Frequency Generation Vibrational Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7050-7059. [PMID: 31055930 DOI: 10.1021/acs.langmuir.8b03847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the influence of salt ions on the microscopic properties of liquid interfaces is of both fundamental and practical importance. A large number of previous experimental and theoretical investigations have explored the salt effects on the surfaces of either pure water or neat organic liquid. However, how the salt ions affect the interfacial structures of water/organic liquid mixtures has rarely been studied. Here, the molecular dynamics (MD) simulations and sum frequency generation vibrational spectroscopy (SFG-VS) were carried out to investigate the influence of sodium iodide (NaI) on the air/liquid interfaces of the methanol-water mixtures. The SFG-VS spectral intensities were discovered to increase with the addition of 3 M NaI, while the center frequencies of the C-H stretching vibrations at high methanol concentrations showed a ∼2 cm-1 blue shift compared with those obtained before adding NaI. The MD results indicated that Na+ and I- can only affect Part I (near the bulk phase) but not Part II (near the gas phase) of the interfacial region. It was also found that the average orientations of interfacial methyl groups were constant and not effectively disturbed by the changes of methanol concentrations or the addition of NaI. It is therefore concluded that the changes of the SFG-VS intensities upon the addition of NaI salts were mainly caused by the increasing number of interfacial methanol molecules. Further analysis showed that the existence of NaI affects the surface tensions more for the interfaces with higher bulk methanol concentrations, which is in agreement with the SFG-VS results. It is noteworthy that the maximum number density of methanol molecules with the net nonzero orientations is reached near the Gibbs dividing surface, the reasons of which are worth further investigating.
Collapse
Affiliation(s)
- Jianchuan Liu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xia Li
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Hou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xun Li
- School of linguistics and literature , UESTC , Chengdu 611731 , China
| | - Zhou Lu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
20
|
Govind Rajan A, Strano MS, Blankschtein D. Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid-Liquid Electrostatic Interactions. NANO LETTERS 2019; 19:1539-1551. [PMID: 30694070 DOI: 10.1021/acs.nanolett.8b04335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigate the wetting and frictional behavior of polar (water and ethylene glycol) and nonpolar (diiodomethane) liquids on the basal plane of hexagonal boron nitride (hBN) using molecular dynamics simulations. Our results for the wettability of water on the hBN basal plane (contact angle 81°) are in qualitative agreement with the experimentally deduced mild hydrophilicity of the hBN basal plane (contact angle 66°). We find that water exhibits the lowest wettability, as quantified by the highest contact angle, but the highest friction coefficient of (1.9 ± 0.4) × 105 N-s/m3 on the hBN basal plane among the three liquids considered. This intriguing finding is explained in terms of the competition between dispersion and electrostatic interactions operating between the hBN basal plane and the three liquids. We find that electrostatic interactions do not affect the wetting behavior appreciably, as quantified by a less than 3° change in the respective contact angles of the three liquids considered. On the other hand, electrostatic interactions are found to increase the friction coefficients of the three liquids in contact with hBN to different extents, indicating that despite the increased friction of water on hBN, relative to that on graphene, nonpolar liquids may exhibit similar friction coefficients on hBN and graphene. Our findings reveal that the increase in the friction coefficient, upon incorporation of solid-liquid electrostatic interactions, is brought about by a greater increase in the solid-liquid mean-squared total lateral force, as compared to a smaller reduction in the decorrelation time of the solid-liquid force.
Collapse
Affiliation(s)
- Ananth Govind Rajan
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Michael S Strano
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel Blankschtein
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Peng M, Nguyen AV, Wang J, Miller R. A critical review of the model fitting quality and parameter stability of equilibrium adsorption models. Adv Colloid Interface Sci 2018; 262:50-68. [PMID: 30342700 DOI: 10.1016/j.cis.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/12/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
We reviewed eight commonly used equilibrium adsorption models and examined their underlying assumptions, fitting qualities, and parameter stabilities. We compared several objective functions that have been applied to curve fitting analysis and a few statistics tests that have been performed to evaluate regression quality. The iteratively reweighted least squares algorithm was selected as the most suitable regression method for adsorption models in the presence of heteroscedasticity. The fraction of unexplained variance was selected to indicate the model fitting quality. Two sources of parameter instability were identified: residue instability and function instability. While the definition of the instability caused by residue is well established, we are the first to consider the instability caused by an adsorption model. The models discussed in this article can be applied to many surfactants, such as normal alcohols, polyglycol ethers, and sodium dodecyl sulfate at different salt concentrations. Our results show that both the model fitting quality and parameter instability increase with the number of parameters subject to curve fitting. For the Frumkin-type of reorientation model, the parameter instability can be as high as 25%. The high degree of instability in some complicated adsorption models may invalidate the estimated parameters. Therefore, additional measurements or simulations are required for complicated models to extract reliable model parameters.
Collapse
|
22
|
Ohto T, Dodia M, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation. J Chem Theory Comput 2018; 15:595-602. [DOI: 10.1021/acs.jctc.8b00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
23
|
Hartkamp R, Biance AL, Fu L, Dufrêche JF, Bonhomme O, Joly L. Measuring surface charge: Why experimental characterization and molecular modeling should be coupled. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Ghoufi A, Malfreyt P. Calculation of the surface tension of water: 40 years of molecular simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aziz Ghoufi
- Institut de Physique de Rennes, Université Rennes 1, Rennes, France
| | - Patrice Malfreyt
- Institut de Chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand, France
| |
Collapse
|
25
|
Jeon J, Hsieh CS, Nagata Y, Bonn M, Cho M. Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation. J Chem Phys 2018; 147:044707. [PMID: 28764370 DOI: 10.1063/1.4995437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The air-water interface has been a subject of extensive theoretical and experimental studies due to its ubiquity in nature and its importance as a model system for aqueous hydrophobic interfaces. We report on the structure and vibrational energy transfer dynamics of this interfacial water system studied with equilibrium and non-equilibrium molecular dynamics simulations employing a density functional theory -based description of the system and the kinetic energy spectral density analysis. The interfacial water molecules are found to make fewer and weaker hydrogen (H)-bonds on average compared to those in the bulk. We also find that (i) the H-bonded OH groups conjugate to the free OH exhibit rather low vibrational frequencies (3000-3500 cm-1); (ii) the presence of a significant fraction (>10%) of free and randomly oriented water molecules at the interface ("labile water"), neither of whose OH groups are strong H-bond donors; (iii) the inertial rotation of free OH groups, especially from the labile water, contribute to the population decay of excited free OH groups with comparable rate and magnitude as intramolecular energy transfer between the OH groups. These results suggest that the labile water, which might not be easily detectable by the conventional vibrational sum frequency generation method, plays an important role in the surface water dynamics.
Collapse
Affiliation(s)
- Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Cho-Shuen Hsieh
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Yuki Nagata
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| |
Collapse
|
26
|
Bejagam KK, Singh S, An Y, Berry C, Deshmukh SA. PSO-Assisted Development of New Transferable Coarse-Grained Water Models. J Phys Chem B 2018; 122:1958-1971. [DOI: 10.1021/acs.jpcb.7b10542] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karteek K. Bejagam
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samrendra Singh
- CNH Industrial, Burr Ridge, Chicago, Illinois 60527, United States
| | - Yaxin An
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carter Berry
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
27
|
Haji-Akbari A, Debenedetti PG. Perspective: Surface freezing in water: A nexus of experiments and simulations. J Chem Phys 2017; 147:060901. [DOI: 10.1063/1.4985879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
28
|
Galib M, Duignan TT, Misteli Y, Baer MD, Schenter GK, Hutter J, Mundy CJ. Mass density fluctuations in quantum and classical descriptions of liquid water. J Chem Phys 2017; 146:244501. [DOI: 10.1063/1.4986284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mirza Galib
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Timothy T. Duignan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Yannick Misteli
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Gregory K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jürg Hutter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
29
|
Giberti F, Hassanali AA. The excess proton at the air-water interface: The role of instantaneous liquid interfaces. J Chem Phys 2017; 146:244703. [DOI: 10.1063/1.4986082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Federico Giberti
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Ali A. Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
30
|
Hosseinpour S, Tang F, Wang F, Livingstone RA, Schlegel SJ, Ohto T, Bonn M, Nagata Y, Backus EHG. Chemisorbed and Physisorbed Water at the TiO 2/Water Interface. J Phys Chem Lett 2017; 8:2195-2199. [PMID: 28447795 PMCID: PMC5489252 DOI: 10.1021/acs.jpclett.7b00564] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The interfacial structure of water in contact with TiO2 is the key to understand the mechanism of photocatalytic water dissociation as well as photoinduced superhydrophilicity. We investigate the interfacial molecular structure of water at the surface of anatase TiO2, using phase-sensitive sum frequency generation spectroscopy together with spectra simulation using ab initio molecular dynamic trajectories. We identify two oppositely oriented, weakly and strongly hydrogen-bonded subensembles of O-H groups at the superhydrophilic UV irradiated TiO2 surface. The water molecules with weakly hydrogen-bonded O-H groups are chemisorbed, i.e. form hydroxyl groups, at the TiO2 surface with their hydrogen atoms pointing toward bulk water. The strongly hydrogen-bonded O-H groups interact with the oxygen atom of the chemisorbed water. Their hydrogen atoms point toward the TiO2. This strong interaction between physisorbed and chemisorbed water molecules causes superhydrophilicity.
Collapse
Affiliation(s)
- Saman Hosseinpour
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- E-mail:
| | - Fujie Tang
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- International
Center for Quantum Materials, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Fenglong Wang
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ruth A. Livingstone
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Simon J. Schlegel
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Mischa Bonn
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- E-mail:
| | - Ellen H. G. Backus
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- E-mail:
| |
Collapse
|
31
|
Hauner IM, Deblais A, Beattie JK, Kellay H, Bonn D. The Dynamic Surface Tension of Water. J Phys Chem Lett 2017; 8:1599-1603. [PMID: 28301160 PMCID: PMC5388897 DOI: 10.1021/acs.jpclett.7b00267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m-1) than under equilibrium conditions (∼72 mN m-1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.
Collapse
Affiliation(s)
- Ines M. Hauner
- van
der Waals-Zeeman Institute, University of
Amsterdam, 1098XH Amsterdam, The Netherlands
- Chimie
ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Antoine Deblais
- Laboratoire
Ondes et Matière d’Aquitaine (UMR 5798 CNRS), University of Bordeaux, 351 cours de la Libération, 33405 Talence, France
| | - James K. Beattie
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hamid Kellay
- Laboratoire
Ondes et Matière d’Aquitaine (UMR 5798 CNRS), University of Bordeaux, 351 cours de la Libération, 33405 Talence, France
| | - Daniel Bonn
- van
der Waals-Zeeman Institute, University of
Amsterdam, 1098XH Amsterdam, The Netherlands
- E-mail:
| |
Collapse
|
32
|
Reddy SK, Straight SC, Bajaj P, Huy Pham C, Riera M, Moberg DR, Morales MA, Knight C, Götz AW, Paesani F. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. J Chem Phys 2016; 145:194504. [DOI: 10.1063/1.4967719] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sandeep K. Reddy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Shelby C. Straight
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Pushp Bajaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - C. Huy Pham
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Daniel R. Moberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Miguel A. Morales
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Chris Knight
- Leadership Computing Facility, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
33
|
Werth S, Stöbener K, Horsch M, Hasse H. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1206218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stephan Werth
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katrin Stöbener
- Department for Optimization, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
| | - Martin Horsch
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hans Hasse
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|