1
|
Hsieh YC, Lin CY, Lin HY, Kuo CT, Yin SY, Hsu YH, Yeh HF, Wang J, Wan D. Controllable-Swelling Microneedle-Assisted Ultrasensitive Paper Sensing Platforms for Personal Health Monitoring. Adv Healthc Mater 2023; 12:e2300321. [PMID: 37037493 DOI: 10.1002/adhm.202300321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Microneedle (MN) patches, which allow the extraction of skin interstitial fluid (ISF) without a pain sensation, are powerful tools for minimally invasive biofluid sampling. Herein, an MN-assisted paper-based sensing platform that enables rapid and painless biofluid analysis with ultrasensitive molecular recognition capacity is developed. First, a controllable-swelling MN patch is constructed through the engineering of a poly(ethylene glycol) diacrylate/methacrylated hyaluronic acid hydrogel; it combines rapid, sufficient extraction of ISF with excellent structural integrity. Notably, the analyte molecules in the needles can be recovered into a moist cellulose paper through spontaneous diffusion. More importantly, the paper can be functionalized with enzymatic colorimetric reagents or a plasmonic array, enabling a desired detection capacity-for example, the use of paper-based surface-enhanced Raman spectroscopy sensors leads to label-free, trace detection (sub-ppb level) of a diverse set of molecules (cefazolin, nicotine, paraquat, methylene blue). Finally, nicotine is selected as a model drug to evaluate the painless monitoring of three human volunteers. The changes in the nicotine levels can be tracked, with the levels varying significantly in response to the metabolism of drug in different volunteers. This as-designed minimally invasive sensing system should open up new opportunities for precision medicine, especially for personal healthcare monitoring.
Collapse
Affiliation(s)
- Yi-Chia Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hsin-Yao Lin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Division of Neurosurgery, Department of Surgery, MacKay Memorial Hospital, Taipei, 104217, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Ting Kuo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shin-Yi Yin
- Department of Research and Development, Win Coat Corporation, Hsinchu, 30078, Taiwan
| | - Ying-Hua Hsu
- Department of Research and Development, Win Coat Corporation, Hsinchu, 30078, Taiwan
| | - Hsiu-Feng Yeh
- Department of Research and Development, Win Coat Corporation, Hsinchu, 30078, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
2
|
Mustafa S, Anwar H, Ain QU, Ahmed H, Iqbal S, Ijaz MU. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62237-62248. [PMID: 36940025 DOI: 10.1007/s11356-023-26469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3β-HSD, and 17β-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
3
|
Paraquat and Diquat: Recent Updates on Their Pretreatment and Analysis Methods since 2010 in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020684. [PMID: 36677742 PMCID: PMC9866389 DOI: 10.3390/molecules28020684] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Paraquat (PQ) and diquat (DQ) are quaternary ammonium herbicides which have been used worldwide for controlling the growth of weeds on land and in water. However, PQ and DQ are well known to be toxic. PQ is especially toxic to humans. Moreover, there is no specific antidote for PQ poisoning. The main treatment for PQ poisoning is hemoperfusion to reduce the PQ concentration in blood. Therefore, it is essential to be able to detect PQ and DQ concentrations in biological samples. This critical review summarizes the articles published from 2010 to 2022 and can help researchers to understand the development of the sample treatment and analytical methods for the determination of PQ and DQ in various types of biological samples. The sample preparation includes liquid-liquid extraction, solid-phase extraction based on different novel materials, microextration methods, and other methods. Analytical methods for quantifying PQ and DQ, such as different chromatography and spectroscopy methods, electrochemical methods, and immunological methods, are illustrated and compared. We focus on the latest advances in PQ and DQ treatment and the application of new technologies for these analyses. In our opinion, tandem mass spectrometry is a good choice for the determination of PQ and DQ, due to its high sensitivity, high selectivity, and high accuracy. As far as we are concerned, the best LOD of 4 pg/mL for PQ in serum can be obtained.
Collapse
|
4
|
All-Step-in-One Test Kit for Paraquat Detection in Water and Vegetable Samples. ANALYTICA 2022. [DOI: 10.3390/analytica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the first development of an all-steps-in-one test kit for the determination of paraquat in natural water, and vegetable and agricultural samples. A handheld photometer incorporated with a magnetic stirrer was used to complete the steps of extraction, mixing, and detection. Paraquat produces a blue free radical ion via a reduction with sodium dithionite in alkaline conditions. Sodium dithionite powder was investigated for the enhancement of reagent stability duration, which was added directly into sample solution that showed insignificant difference in sensitivity as compared with that of the solution format of sodium dithionite. The developed test kit showed good performance with the linear calibration of 0.5 to 10 mg L−1 with a high coefficient of determination (r2 = 0.9947). The lower limit of quantitation (LLOQ = 3SD of intercept per slope) carried out from the method using the handheld photometer was 0.50 mg L−1. The limit of detection (LOD) by naked eye was 0.30 mg L−1. The recovery study was acceptable in the range of 101–115%. Intraday (n = 3) and interday (n = 3) precision was less than 1%. On the basis of the significance test at the 95% confidence interval, quantitative results of the developed test kit agreed well with those from high-performance liquid chromatography (HPLC). To the best of our knowledge, this is the first report demonstrating an online extraction for vegetables incorporated into a test kit, applicable for on-site analysis. Single-point calibration based on the Beer–Lambert law also demonstrated the measurement of paraquat. In testing with a nominal standard solution of 5.00 mg L−1 paraquat, the reading concentration was 5.09 ± 0.03 mg L−1 paraquat (n = 20) with a K value of 0.0967 (close to the slope of multipoint calibration). This research is a direct benefit to agricultural products and the health of a population for the analysis of pesticides and herbicides.
Collapse
|
5
|
A Paper-Based Analytical Device for Analysis of Paraquat in Urine and Its Validation with Optical-Based Approaches. Diagnostics (Basel) 2020; 11:diagnostics11010006. [PMID: 33375112 PMCID: PMC7822122 DOI: 10.3390/diagnostics11010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023] Open
Abstract
Paraquat is a highly toxic herbicide. Paraquat poisoning is often fatal and is an important public health threat in many places. The quick identification and timely initiation of treatment based on timely analysis of the paraquat concentration in urine/serum could improve the prognosis for patients. However, current paraquat concentration measurements are time-consuming and difficult to implement due to the expensive and bulky equipment required. To address these practical challenges, paper-based devices have emerged as alternative diagnostic tools for improving point-of-care testing. In this study, we demonstrate the successful use of a paper-based analytical device for the accurate detection of urine paraquat concentration. The developed paper-based analytical device employs colorimetric paraquat concentration measurements. The R2 value for the urine paraquat standard curve was 0.9989, with a dynamic range of 0–100 ppm. The limit of detection was 3.01 ppm. Two other optical-based approaches, Spectrochip and NanoDrop, were used for comparison. The results suggest that the developed paper-based analytical device is comparable to other colorimetric measurements, as determined by Bland–Altman analysis. The device was clinically validated using urine from six paraquat-poisoned patients. The results prove that the developed paper-based analytical device is accurate, easy-to-use, and efficient for urine paraquat concentration measurement, and may enable physicians to improve clinical management.
Collapse
|
6
|
Chaikhan P, Udnan Y, Sananmuang R, Ampiah-Bonney RJ, Chuachuad Chaiyasith W. A low-cost microfluidic paper-based analytical device (µPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Abstract
Toxins identified as causing parkinsonism and being related to overall idiopathic Parkinson disease risk range from heavy metals to pesticides to contaminants in synthetic heroin. Several described in this article exhibit significant oxidative stress on neurons of the central nervous system and have a particular predilection toward damage of dopaminergic neurons. Although many of these toxins have well-established connections with Parkinson disease risk, a few continue to be studied with data still being produced. The parkinsonisms caused by these agents have variable responses to dopaminergic therapies. This article discusses manganese, mercury, MPTP, organochlorines, organophosphates, paraquat, rotenone, and Agent Orange.
Collapse
Affiliation(s)
- Steven McKnight
- Neurology Department, Walter Reed National Military Medical Center, America Building #19, 6th Floor, Room 6146, 4954 North Palmer Road, Bethesda, MD 20889-5630, USA; Department of Defense, Walter Reed National Military Medical Center, America Building #19, 6th Floor, Room 6146, 4954 North Palmer Road, Bethesda, MD 20889-5630, USA
| | - Nawaz Hack
- Neurology Department, Walter Reed National Military Medical Center, America Building #19, 6th Floor, Room 6146, 4954 North Palmer Road, Bethesda, MD 20889-5630, USA; Department of Defense, Walter Reed National Military Medical Center, America Building #19, 6th Floor, Room 6146, 4954 North Palmer Road, Bethesda, MD 20889-5630, USA; Department of Neurology, Armed Forces University of the Health Sciences.
| |
Collapse
|
8
|
Osteonecrosis of Femoral Head, An Overlooked Long-Term Complication after Paraquat Intoxication: A Retrospective Cohort Study. Sci Rep 2020; 10:8827. [PMID: 32483235 PMCID: PMC7264308 DOI: 10.1038/s41598-020-65756-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/29/2020] [Indexed: 01/04/2023] Open
Abstract
With increasing numbers of patients surviving acute intoxication phase, long-term complication after paraquat intoxication is a topic worth exploring, such as osteonecrosis (ON) of femoral head. We reviewed 86 paraquat-intoxicated survivors between 2000 and 2012 in Chang Gung Memorial Hospital, a 3700-bed tertiary hospital in Taiwan. With all the patients underwent same detoxification protocol in the acute stage, 17.4% of paraquat poisoning survivors developed ON of femoral head requiring surgery during follow up. Most of ON episodes occurred within 2 to 4 years after paraquat intoxication and then plateau after 6 years. ON patients exhibited higher SOFA scores than non-ON patients (2.80 ± 2.14 vs. 1.76 ± 1.52, p = 0.028). Furthermore, AKIN scores are also higher in the ON patients than non-ON patients (0.87 ± 1.13 vs. 0.38 ± 0.74, p = 0.040). Multivariate logistic regression showed higher AKIN score and higher partial pressure of carbon dioxide in the blood 48 hours after admission significantly predicted ON of femoral head after paraquat intoxication (p = 0.002 and p = 0.006 respectively). Larger studies with longer follow-up durations are warranted to confirm our finding.
Collapse
|
9
|
Two Potential Clinical Applications of Origami-Based Paper Devices. Diagnostics (Basel) 2019; 9:diagnostics9040203. [PMID: 31779180 PMCID: PMC6963803 DOI: 10.3390/diagnostics9040203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
Detecting small amounts of analyte in clinical practice is challenging because of deficiencies in specimen sample availability and unsuitable sampling environments that prevent reliable sampling. Paper-based analytical devices (PADs) have successfully been used to detect ultralow amounts of analyte, and origami-based PADs (O-PADs) offer advantages that may boost the overall potential of PADs in general. In this study, we investigated two potential clinical applications for O-PADs. The first O-PAD we investigated was an origami-based enzyme-linked immunosorbent assay (ELISA) system designed to detect different concentrations of rabbit IgG. This device was designed with four wing structures, each of which acted as a reagent loading zone for pre-loading ELISA reagents, and a central test sample loading zone. Because this device has a low limit of detection (LOD), it may be suitable for detecting IgG levels in tears from patients with a suspected viral infection (such as herpes simplex virus (HSV)). The second O-PAD we investigated was designed to detect paraquat levels to determine potential poisoning. To use this device, we sequentially folded each of two separate reagent zones, one preloaded with NaOH and one preloaded with ascorbic acid (AA), over the central test zone, and added 8 µL of sample that then flowed through each reagent zone and onto the central test zone. The device was then unfolded to read the results on the test zone. The three folded layers of paper provided a moist environment not achievable with conventional paper-based ELISA. Both O-PADs were convenient to use because reagents were preloaded, and results could be observed and analyzed with image analysis software. O-PADs expand the testing capacity of simpler PADs while leveraging their characteristic advantages of convenience, cost, and ease of use, particularly for point-of-care diagnosis.
Collapse
|
10
|
Chang TH, Tung KH, Gu PW, Yen TH, Cheng CM. Rapid Simultaneous Determination of Paraquat and Creatinine in Human Serum Using a Piece of Paper. MICROMACHINES 2018; 9:E586. [PMID: 30424506 PMCID: PMC6266035 DOI: 10.3390/mi9110586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Paraquat intoxication is characterized by acute kidney injury and multi-organ failure, causing substantial mortality and morbidity. This study aims to develop a 2-in-1 paper-based analytical device to detect the concentrations of paraquat and creatinine in human serum, which can help clinicians diagnose patients with paraquat poisoning in a more rapid and geographically unrestricted manner. The procedure involves fabrication of a paper-based analytical device, i.e., printing of design on a filter paper, heating of wax-printed micro zone plates so as molten wax diffusing into and completely through the paper to the other side, forming hydrophobic boundaries that could act as detection zones for the paraquat colorimetric assay, and finally analysis using ImageJ software. The paper employed a colorimetric sodium dithionite assay to indicate the paraquat level in a buffer or human serum system in less than 10 min. In this study, colorimetric changes into blue color could be observed by the naked eye. By curve fitting models of sodium dithionite in normal human serum, we evaluated the serum paraquat levels for five paraquat patients. In the sodium dithionate assay, the measured serum paraquat concentrations in patients 1⁻5 were 22.59, 5.99, 26.52, 35.19 and 25.00 ppm, respectively. On the other hand, by curve fitting models of the creatinine assay in normal human serum, the measured serum creatinine concentrations were 16.10, 12.92, 13.82, 13.58 and 12.20 ppm, respectively. We found that the analytical performance of this device can compete with the standard of Clinical Laboratory of Chang Gung Memorial Hospital, with a less complicated sample preparation process and more rapid results. In conclusion, this 2-in-1 paper-based analytical device has the advantage of being simple and cheap, enabling rapid detection of paraquat intoxication as well as assessment of renal prognosis.
Collapse
Affiliation(s)
- Tsui-Hsuan Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Kuo-Hao Tung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Po-Wen Gu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital and Chang Gung University, Linkou 333, Taiwan.
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Kidney Research Center, Center for Tissue Engineering, Chang Gung Memorial Hospital and Chang Gung University, Linkou 333, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
11
|
Wei TY, Yen TH, Cheng CM. Point-of-care testing in the early diagnosis of acute pesticide intoxication: The example of paraquat. BIOMICROFLUIDICS 2018; 12:011501. [PMID: 29430271 PMCID: PMC5775096 DOI: 10.1063/1.5003848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/04/2018] [Indexed: 05/09/2023]
Abstract
Acute pesticide intoxication is a common method of suicide globally. This article reviews current diagnostic methods and makes suggestions for future development. In the case of paraquat intoxication, it is characterized by multi-organ failure, causing substantial mortality and morbidity. Early diagnosis may save the life of a paraquat intoxication patient. Conventional paraquat intoxication diagnostic methods, such as symptom review and urine sodium dithionite assay, are time-consuming and impractical in resource-scarce areas where most intoxication cases occur. Several experimental and clinical studies have shown the potential of portable Surface Enhanced Raman Scattering (SERS), paper-based devices, and machine learning for paraquat intoxication diagnosis. Portable SERS and new SERS substrates maintain the sensitivity of SERS while being less costly and more convenient than conventional SERS. Paper-based devices provide the advantages of price and portability. Machine learning algorithms can be implemented as a mobile phone application and facilitate diagnosis in resource-limited areas. Although these methods have not yet met all features of an ideal diagnostic method, the combination and development of these methods offer much promise.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Kidney Research Center, Center for Tissue Engineering, Chang Gung Memorial Hospital and Chang Gung University, Linkou 333, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
12
|
Weng CH, Chen HH, Hu CC, Huang WH, Hsu CW, Fu JF, Lin WR, Wang IK, Yen TH. Predictors of acute kidney injury after paraquat intoxication. Oncotarget 2017; 8:51345-51354. [PMID: 28881652 PMCID: PMC5584253 DOI: 10.18632/oncotarget.17975] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Paraquat intoxication is characterized by multi-organ failure, causing substantial mortality and morbidity. Many paraquat patients experience acute kidney injury (AKI), sometimes requiring hemodialysis. We observed 222 paraquat-intoxicated patients between 2000 and 2012, and divided them into AKI (n = 103) and non-AKI (n = 119) groups. The mortality rate was higher for AKI than non-AKI patients (70.1% vs. 40.0%, P < 0.001). Patients with AKI had a longer time to hospital arrival (P = 0.003), lower PaO2 (P = 0.006) and higher alveolar-arterial O2 difference (P < 0.001) 48 h after admission, higher sequential organ failure assessment 48-h score (P < 0.001), higher severity index of paraquat poisoning (SIPP) score (P = 0.016), lower PaCO2 at admission (P = 0.031), higher PaO2 at admission (P = 0.015), lower nadir PaCO2 (P = 0.001) and lower nadir HCO3 (P = 0.004) than non-AKI patients. Multivariate logistic regression indicated that acute hepatitis (P < 0.001), a longer time to hospital arrival (P < 0.001), higher SIPP score (P = 0.026) and higher PaO2 at admission (P = 0.014) were predictors of AKI. The area under the receiver operating characteristic curve confirmed that an Acute Kidney Injury Network 48-hour score ≥ 2 predicted AKI necessitating hemodialysis with a sensitivity of 0.6 and specificity of 0.832. AKI is common (46.4%) following paraquat ingestion, and acute hepatitis, the time to hospital arrival, SIPP score and PaO2 at admission were powerful predictors of AKI. Larger studies with longer follow-up durations are warranted.
Collapse
Affiliation(s)
- Cheng-Hao Weng
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Hui-Hsiang Chen
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Ching-Chih Hu
- Department of Hepatogastroenterology and Liver Research Unit, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wen-Hung Huang
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Ching-Wei Hsu
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - I-Kwan Wang
- Department of Nephrology, Chang Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan.,Kidney Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
13
|
Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices. Sci Rep 2017; 7:46213. [PMID: 28387379 PMCID: PMC5384208 DOI: 10.1038/srep46213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/20/2023] Open
Abstract
Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.
Collapse
|