1
|
Mitra S, Kundagrami A. Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory. J Chem Phys 2023; 158:014904. [PMID: 36610965 DOI: 10.1063/5.0128904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interplay of Coulomb interaction energy, free ion entropy, and conformational elasticity is a fascinating aspect in polyelectrolytes (PEs). We develop a theory for complexation of two oppositely charged PEs, a process known to be the precursor to the formation of complex coacervates in PE solutions, to explore the underlying thermodynamics of complex formation, at low salts. The theory considers general degrees of solvent polarity and dielectricity within an implicit solvent model, incorporating a varying Coulomb strength. Explicit calculation of the free energy of complexation and its components indicates that the entropy of free counterions and salt ions and the Coulomb enthalpy of bound ion-pairs dictate the equilibrium of PE complexation. This helps decouple the self-consistent dependency of charge and size of the uncomplexed parts of the polyions, derive an analytical expression for charge, and evaluate the free energy components as functions of chain overlap. Complexation is observed to be driven by enthalpy gain at low Coulomb strengths, driven by entropy gain of released counterions but opposed by enthalpy loss due to reduction of ion-pairs at moderate Coulomb strengths, and progressively less favorable due to enthalpy loss at even higher Coulomb strengths. The total free energy of the system is found to decrease linearly with an overlap of chains. Thermodynamic predictions from our model are in good quantitative agreement with simulations in literature.
Collapse
Affiliation(s)
- Soumik Mitra
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arindam Kundagrami
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Affinity of disordered protein complexes is modulated by entropy-energy reinforcement. Proc Natl Acad Sci U S A 2022; 119:e2120456119. [PMID: 35727975 PMCID: PMC9245678 DOI: 10.1073/pnas.2120456119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsically disordered proteins (IDPs), which are very common and essential to many biological activities, sometimes function via interaction with another IDP and form a fuzzy complex, which can be highly stable. It is unclear what the biophysical forces are that govern their thermodynamics and specificity, which are essential for de novo fuzzy complex design. Here, we explored the fuzzy complex formed between ProTα and H1, which are oppositely charged IDPs, by swapping the charges between them, generating variants that have either greater polyampholytic or polyelectrolytic nature as well as different charge patterns. Charge swapping and shuffling dramatically change the affinity of the fuzzy complex, which is contributed to by both enthalpy and entropy, where the latter is dominated by counterion release. The association between two intrinsically disordered proteins (IDPs) may produce a fuzzy complex characterized by a high binding affinity, similar to that found in the ultrastable complexes formed between two well-structured proteins. Here, using coarse-grained simulations, we quantified the biophysical forces driving the formation of such fuzzy complexes. We found that the high-affinity complex formed between the highly and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions. We investigated 52 variants of the complex by swapping charges between the two oppositely charged proteins to produce sequences whose negatively or positively charged residue content was more homogeneous or heterogenous (i.e., polyelectrolytic or polyampholytic, having higher or lower absolute net charges, respectively) than the wild type. We also changed the distributions of oppositely charged residues within each participating sequence to produce variants in which the charges were segregated or well mixed. Both types of changes significantly affect binding affinity in fuzzy complexes, which is governed by both enthalpy and entropy. The formation of H1–ProTa is supported by an increase in configurational entropy and by entropy due to counterion release. The latter can be twice as large as the former, illustrating the dominance of counterion entropy in modulating the binding thermodynamics. Complexes formed between proteins with greater absolute net charges are more stable, both enthalpically and entropically, indicating that enthalpy and entropy have a mutually reinforcing effect. The sensitivity of the thermodynamics of the complex to net charge and the charge pattern within each of the binding constituents may provide a means to achieve binding specificity between IDPs.
Collapse
|
3
|
Abstract
Ion-containing polymers have continued to be an important research focus for several decades due to their use as an electrolyte in energy storage and conversion devices. Elucidation of connections between the mesoscopic structure and multiscale dynamics of the ions and solvent remains incompletely understood. Coarse-grained modeling provides an efficient approach for exploring the structural and dynamical properties of these soft materials. The unique physicochemical properties of such polymers are of broad interest. In this review, we summarize the current development and understanding of the structure-property relationship of ion-containing polymers and provide insights into the design of such materials determined from coarse-grained modeling and simulations accompanying significant advances in experimental strategies. We specifically concentrate on three types of ion-containing polymers: proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs). We posit that insight into the similarities and differences in these materials will lead to guidance in the rational design of high-performance novel materials with improved properties for various power source technologies.
Collapse
Affiliation(s)
- Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xubo Luo
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Zhang P, Wang ZG. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Probing the protein corona around charged macromolecules: interpretation of isothermal titration calorimetry by binding models and computer simulations. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractIsothermal titration calorimetry (ITC) is a widely used tool to experimentally probe the heat signal of the formation of the protein corona around macromolecules or nanoparticles. If an appropriate binding model is applied to the ITC data, the heat of binding and the binding stoichiometry as well as the binding affinity per protein can be quantified and interpreted. However, the binding of the protein to the macromolecule is governed by complex microscopic interactions. In particular, due to the steric and electrostatic protein–protein interactions within the corona as well as cooperative, charge renormalization effects of the total complex, the application of standard (e.g., Langmuir) binding models is questionable and the development of more appropriate binding models is very challenging. Here, we discuss recent developments in the interpretation of the Langmuir model applied to ITC data of protein corona formation, exemplified for the well-defined case of lysozyme coating highly charged dendritic polyglycerol sulfate (dPGS), and demonstrate that meaningful data can be extracted from the fits if properly analyzed. As we show, this is particular useful for the interpretation of ITC data by molecular computer simulations where binding affinities can be calculated but it is often not clear how to consistently compare them with the ITC data. Moreover, we discuss the connection of Langmuir models to continuum binding models (where no discrete binding sites have to be assumed) and their possible extensions toward the inclusion of leading order cooperative electrostatic effects.
Collapse
|
6
|
Sing CE, Perry SL. Recent progress in the science of complex coacervation. SOFT MATTER 2020; 16:2885-2914. [PMID: 32134099 DOI: 10.1039/d0sm00001a] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Complex coacervation is an associative, liquid-liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase, which is a dense mix of the oppositely-charged components, and a supernatant phase, which is primarily devoid of these same species. First observed almost a century ago, coacervates have since found relevance in a wide range of applications; they are used in personal care and food products, cutting edge biotechnology, and as a motif for materials design and self-assembly. There has recently been a renaissance in our understanding of this important class of material phenomena, bringing the science of coacervation to the forefront of polymer and colloid science, biophysics, and industrial materials design. In this review, we describe the emergence of a number of these new research directions, specifically in the context of polymer-polymer complex coacervates, which are inspired by a number of key physical and chemical insights and driven by a diverse range of experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews, Urbana, IL, USA.
| | | |
Collapse
|
7
|
Rathee VS, Sidky H, Sikora BJ, Whitmer JK. Role of Associative Charging in the Entropy-Energy Balance of Polyelectrolyte Complexes. J Am Chem Soc 2018; 140:15319-15328. [PMID: 30351015 DOI: 10.1021/jacs.8b08649] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polyelectrolytes may be classified into two primary categories (strong and weak) depending on how their charge state responds to the local environment. Both of these find use in many applications, including drug delivery, gene therapy, layer-by-layer films, and fabrication of ion filtration membranes. The mechanism of polyelectrolyte complexation is, however, still not completely understood, though experimental investigations suggest that entropy gain due to release of counterions is the key driving force for strong polyelectrolyte complexation. Here we perform a comprehensive thermodynamic investigation through coarse-grained molecular simulations permitting us to calculate the free energy of complex formation. Importantly, our expanded-ensemble methods permit the explicit separation of energetic and entropic contributions to the free energy. Our investigations indicate that entropic contributions indeed dominate the free energy of complex formation for strong polyelectrolytes, but are less important than energetic contributions when weak electrostatic coupling or weak polyelectrolytes are present. Our results provide a new view of the free energy of polyelectrolyte complex formation driven by polymer association, which should also arise in systems with large charge spacings or bulky counterions, both of which act to weaken ion-polymer binding.
Collapse
Affiliation(s)
- Vikramjit S Rathee
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Hythem Sidky
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Benjamin J Sikora
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
8
|
The Mechanism for siRNA Transmembrane Assisted by PMAL. Molecules 2018; 23:molecules23071586. [PMID: 29966273 PMCID: PMC6099945 DOI: 10.3390/molecules23071586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022] Open
Abstract
The capacity of silencing genes makes small interfering RNA (siRNA) appealing for curing fatal diseases. However, the naked siRNA is vulnerable to and degraded by endogenous enzymes and is too large and too negatively charged to cross cellular membranes. An effective siRNA carrier, PMAL (poly(maleic anhydride-alt-1-decene) substituted with 3-(dimethylamino) propylamine), has been demonstrated to be able to assist siRNA transmembrane by both experiments and molecular simulation. In the present work, the mechanism of siRNA transmembrane assisted by PMAL was studied using steered molecular dynamics simulations based on the martini coarse-grained model. Here two pulling rates, i.e., 10−6 and 10−5 nm·ps−1, were chosen to imitate the passive and active transport of siRNA, respectively. Potential of mean force (PMF) and interactions among siRNA, PMAL, and lipid bilayer membrane were calculated to describe the energy change during siRNA transmembrane processes at various conditions. It is shown that PMAL-assisted siRNA delivery is in the mode of passive transport. The PMAL can help siRNA insert into lipid bilayer membrane by lowering the energy barrier caused by siRNA and lipid bilayer membrane. PMAL prefers to remain in the lipid bilayer membrane and release siRNA. The above simulations establish a molecular insight of the interaction between siRNA and PMAL and are helpful for the design and applications of new carriers for siRNA delivery.
Collapse
|
9
|
Xu X, Ran Q, Dey P, Nikam R, Haag R, Ballauff M, Dzubiella J. Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs. Biomacromolecules 2018; 19:409-416. [PMID: 29268015 DOI: 10.1021/acs.biomac.7b01499] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic polyelectrolytes constitute high potential drugs and carrier systems for biomedical purposes. Still, their biomolecular interaction modes, in particular those determining the binding affinity to proteins, have not been rationalized. We study the interaction of the drug candidate dendritic polyglycerol sulfate (dPGS) with serum proteins using isothermal titration calorimetry (ITC) interpreted and complemented with molecular computer simulations. Lysozyme is first studied as a well-defined model protein to verify theoretical concepts, which are then applied to the important cell adhesion protein family of selectins. We demonstrate that the driving force of the strong complexation, leading to a distinct protein corona, originates mainly from the release of only a few condensed counterions from the dPGS upon binding. The binding constant shows a surprisingly weak dependence on dPGS size (and bare charge) which can be understood by colloidal charge-renormalization effects and by the fact that the magnitude of the dominating counterion-release mechanism almost exclusively depends on the interfacial charge structure of the protein-specific binding patch. Our findings explain the high selectivity of P- and L-selectins over E-selectin for dPGS to act as a highly anti-inflammatory drug. The entire analysis demonstrates that the interaction of proteins with charged polymeric drugs can be predicted by simulations with unprecedented accuracy. Thus, our results open new perspectives for the rational design of charged polymeric drugs and carrier systems.
Collapse
Affiliation(s)
- Xiao Xu
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany
| | - Qidi Ran
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Pradip Dey
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany.,Polymer Science Unit, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, 700032 Kolkata, India
| | - Rohit Nikam
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany
| | - Rainer Haag
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany.,Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany.,Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
| |
Collapse
|
10
|
Zhu J, Lv Y, Han X, Xu D, Han W. Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations. Sci Rep 2017; 7:12439. [PMID: 28963484 PMCID: PMC5622063 DOI: 10.1038/s41598-017-12031-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023] Open
Abstract
ADP-ribosylhydrolases (ARH1, ARH2 and ARH3) are a family of enzymes to catalyze ADP-ribosylation, a reversible and covalent post-translational modification (PTM). There are four phosphorylated sites (Tyr-4, Tyr-19, Tyr-20, and Tyr-205) in ARH1. To explore the structural changes and functional impact induced by phosphorylation, molecular dynamics (MD) simulations and steered molecular dynamics (SMD) simulations were performed for the phosphorylated and non-phosphorylated ARH1 with the ligands. MD simulations results indicate that: (1) Glu-25 is more frequently in the α helix group in the phosphorylated state with the adenosine-5-diphosphate-ribosylarginine (ADP-RA) complex (51.56%) than that of the non-phosphorylated state(2.12%); (2) Ser-124 and Ser-264 become less flexible in the phosphorylated state with ADP-RA complex, which helps two residues form hydrogen bonds with ADP-RA; and (3) Tyr-211 is also less flexible in the phosphorylated state with ADP-RA complex, which helps stabilize the cation-π interaction of Y211-R119. All these changes facilitate ADP-RA to bind ARH1. In addition, according to the crystal structure of adenosine-5-diphosphate-ribose (ADP-ribose) in complex with non-phosphorylated and phosphorylated ARH1, the possible unbinding pathways of ADP-ribose from non-phosphorylated and phosphorylated ARH1 were explored respectively using SMD simulations. Our results show that phosphorylated ARH1 has more ordered structures than the non-phosphorylated type.
Collapse
Affiliation(s)
- Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yishuo Lv
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xiaosong Han
- Department of Electric Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
- College of Computer Science and Technology Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Dong Xu
- Department of Electric Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA.
- College of Computer Science and Technology Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
- Department of Electric Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA.
| |
Collapse
|
11
|
Lu Y, Li J, Lu D. The mechanism for the complexation and dissociation between siRNA and PMAL: a molecular dynamics simulation study based on a coarse-grained model. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1350663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yanfei Lu
- Key Laboratory of Industrial Biocatalysis, Chinese Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jipeng Li
- Key Laboratory of Industrial Biocatalysis, Chinese Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Diannan Lu
- Key Laboratory of Industrial Biocatalysis, Chinese Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Ahualli S, Martín-Molina A, Maroto-Centeno JA, Quesada-Pérez M. Interaction between Ideal Neutral Nanogels: A Monte Carlo Simulation Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Ahualli
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alberto Martín-Molina
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | | - Manuel Quesada-Pérez
- Departamento
de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700, Linares, Jaén, Spain
| |
Collapse
|
13
|
Salehi A, Larson RG. A Molecular Thermodynamic Model of Complexation in Mixtures of Oppositely Charged Polyelectrolytes with Explicit Account of Charge Association/Dissociation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01464] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ali Salehi
- Department of Chemical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ronald G. Larson
- Department of Chemical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|