1
|
Sin JS. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory. J Chem Phys 2022; 157:084902. [DOI: 10.1063/5.0097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we study electrostatic and structural properties between pH-responsive polyelectrolyte brushes by using a strong stretching theory accounting for excluded volume interactions, the density of polyelectrolyte chargeable sites and the Born energy difference between the inside and outside of the brush layer.In a free energy framework, we obtain self-consistent field equations to determine electrostatic properties between two pH-responsive polyelectrolyte brushes. We elucidate that in the region between two pH-responsive polyelectrolyte brushes, electrostatic potential at the centerline and osmotic pressure increase not only with excluded volume interaction, but also with density of chargeable sites on a polyelectrolyte molecule. Importantly, we clarify that when two pH-responsive polyelectrolyte brushes approach each other, the brush thickness becomes short and that a large excluded volume interaction and a large density of chargeable sites yield the enhanced contract of polyelectrolyte brushes. In addition, we also demonstrate how the influence of such quantities as pH, the number of Kuhn monomers, the density of charged sites, the lateral separation between adjacent polyelectrolyte brushes, Kuhn length on the electrostatic and structural properties between the two polyelectrolyte brushes is affected by the exclusion volume interaction. Finally, we investigate the influence of Born energy difference on the thickness of polyelectrolyte brushes and the osmotic pressure between two pH-responsive polyelectrolyte brushes.
Collapse
Affiliation(s)
- Jun-Sik Sin
- Natural Science Center, Kim Il Sung University, Korea, Democratic People's Republic of (North Korea)
| |
Collapse
|
2
|
Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interface Sci 2022; 303:102640. [PMID: 35358806 DOI: 10.1016/j.cis.2022.102640] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/18/2022]
Abstract
In modern-day research, nanoparticles (size < 100nm) are an indispensable tool for various applications, especially in the field of biomedicine. Although enormous efforts have been made to understand the properties and specificities of nanoparticles, many questions are still not answered and the new ones arise. In this review we summarize current trends in the nanoparticle synthesis and characterization and interpret the stability of nanoparticles in various media from aqueous solutions to biological milieu important for the in vitro and in vivo studies. To get more detailed insight into nanoparticle charging properties and interactions of nanoparticles with interfaces the theoretical models are presented. Finally, the overview of nanoparticle applications is given and the future prospects are discussed.
Collapse
Affiliation(s)
- Atiđa Selmani
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria.
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Chen J, Bera MK, Li H, Yang Y, Sun X, Luo J, Baughman J, Liu C, Yao X, Chuang SSC, Liu T. Accurate Determination of the Quantity and Spatial Distribution of Counterions around a Spherical Macroion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiahui Chen
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Mrinal K. Bera
- NSF's ChemMatCARS Center for Advanced Radiation Sources The University of Chicago Chicago IL 60637 USA
| | - Hui Li
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xinyu Sun
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jiancheng Luo
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jessi Baughman
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Cheng Liu
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xuesi Yao
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Steven S. C. Chuang
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
4
|
Chen J, Bera MK, Li H, Yang Y, Sun X, Luo J, Baughman J, Liu C, Yao X, Chuang SSC, Liu T. Accurate Determination of the Quantity and Spatial Distribution of Counterions around a Spherical Macroion. Angew Chem Int Ed Engl 2021; 60:5833-5837. [PMID: 33295092 DOI: 10.1002/anie.202013806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Indexed: 11/10/2022]
Abstract
The accurate distribution of countercations (Rb+ and Sr2+ ) around a rigid, spherical, 2.9-nm size polyoxometalate cluster, {Mo132 }42- , is determined by anomalous small-angle X-ray scattering. Both Rb+ and Sr2+ ions lead to shorter diffuse lengths for {Mo132 } than prediction. Most Rb+ ions are closely associated with {Mo132 } by staying near the skeleton of {Mo132 } or in the Stern layer, whereas more Sr2+ ions loosely associate with {Mo132 } in the diffuse layer. The stronger affinity of Rb+ ions towards {Mo132 } than that of Sr2+ ions explains the anomalous lower critical coagulation concentration of {Mo132 } with Rb+ compared to Sr2+ . The anomalous behavior of {Mo132 } can be attributed to majority of negative charges being located at the inner surface of its cavity. The longer anion-cation distance weakens the Coulomb interaction, making the enthalpy change owing to the breakage of hydration layers of cations more important in regulating the counterion-{Mo132 } interaction.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Mrinal K Bera
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Hui Li
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Xinyu Sun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Jiancheng Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Jessi Baughman
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Cheng Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Xuesi Yao
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Steven S C Chuang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| |
Collapse
|
5
|
Saboorian-Jooybari H, Chen Z. Analytical solutions of the Poisson-Boltzmann equation within an interstitial electrical double layer in various geometries. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
|
7
|
Bohinc K, Bossa GV, May S. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interface Sci 2017; 249:220-233. [PMID: 28571611 DOI: 10.1016/j.cis.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
Abstract
An electric double layer forms when the small mobile ions of an electrolyte interact with an extended charged object, a macroion. The competition between electrostatic attraction and translational entropy loss of the small ions results in a diffuse layer of partially immobilized ions in the vicinity of the macroion. Modeling structure and energy of the electric double layer has a long history that has lead to the classical Poisson-Boltzmann theory and numerous extensions that account for ion-ion correlations and structural ion and solvent properties. The present review focuses on approaches that instead of going beyond the mean-field character of Poisson-Boltzmann theory introduce structural details of the ions and the solvent into the Poisson-Boltzmann modeling framework. The former include not only excluded volume effects but also the presence of charge distributions on individual ions, spatially extended ions, and internal ionic degrees of freedom. The latter treat the solvent either explicitly as interacting Langevin dipoles or in the form of effective non-electrostatic interactions, in particular Yukawa interactions, that are added to the Coulomb potential. We discuss how various theoretical models predict structural properties of the electric double layer such as the differential capacitance and compare some of these predictions with computer simulations.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | | | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
8
|
Jang S, Shin GR, Kim SC. Note: Density functional theory for uniformly charged hard-sphere ions. J Chem Phys 2017; 147:036101. [PMID: 28734277 DOI: 10.1063/1.4995990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The density function theory has been proposed for studying the structural properties of electrolytes containing uniformly charged hard-spherical ions. The calculated result shows good agreement with the corresponding Monte Carlo simulation data of Bohinc et al. [J. Chem. Phys. 145, 234901 (2016)]. The results confirm that the attraction between like-charged planar surfaces is the results of the intra-ionic correlation and depends strongly on the charge distribution of hard-sphere ions.
Collapse
Affiliation(s)
- Seanea Jang
- Department of Physics, Andong National University, Andong 36729, South Korea
| | - Ghi Ryang Shin
- Department of Physics, Andong National University, Andong 36729, South Korea
| | - Soon-Chul Kim
- Department of Physics, Andong National University, Andong 36729, South Korea
| |
Collapse
|
9
|
McCallum C, Pennathur S, Gillespie D. Two-Dimensional Electric Double Layer Structure with Heterogeneous Surface Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5642-5651. [PMID: 28525283 DOI: 10.1021/acs.langmuir.7b00731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we present a systematic study of the lateral (parallel to the wall) and normal (perpendicular to the wall) nanostructure of the electric double layer at a heterogeneous interface between two regions of different surface charges, often found in nanoscale electrochemical devices. Specifically, classical density functional theory (DFT) is used to probe a cation concentration range of 10 mM to 1 M, for valences of +1, + 2, and +3, and a diameter range of 0.15-0.9 nm over widely varying surface charges (between -0.15 and +0.15 C/m2). The DFT results predict significant lateral and normal nanostructure in the form of ion concentration oscillations. These results are directly compared with those from Poisson-Boltzmann theory, showing significant deviation between the two theories, not only in the concentration profiles, but also in the sign of the electrostatic potential.
Collapse
Affiliation(s)
- Christopher McCallum
- Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Sumita Pennathur
- Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center , Chicago, Illinois 60612, United States
| |
Collapse
|