1
|
Zhang C, Wang ZH, Wang H, Liang JX, Zhu C, Li J. Ru 3@Mo 2CO 2 MXene single-cluster catalyst for highly efficient N 2-to-NH 3 conversion. Natl Sci Rev 2024; 11:nwae251. [PMID: 39257434 PMCID: PMC11385201 DOI: 10.1093/nsr/nwae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024] Open
Abstract
Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tunable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Notably, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10-2 s-1 site-1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses that of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding of the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.
Collapse
Affiliation(s)
- Cong Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Ze-Hui Wang
- Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiyan Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jin-Xia Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
2
|
Peng X, Zhang M, Zhang T, Zhou Y, Ni J, Wang X, Jiang L. Single-atom and cluster catalysts for thermocatalytic ammonia synthesis at mild conditions. Chem Sci 2024; 15:5897-5915. [PMID: 38665515 PMCID: PMC11041362 DOI: 10.1039/d3sc06998b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Ammonia (NH3) is closely related to the fields of food and energy that humans depend on. The exploitation of advanced catalysts for NH3 synthesis has been a research hotspot for more than one hundred years. Previous studies have shown that the Ru B5 sites (step sites on the Ru (0001) surface uniquely arranged with five Ru atoms) and Fe C7 sites (iron atoms with seven nearest neighbors) over nanoparticle catalysts are highly reactive for N2-to-NH3 conversion. In recent years, single-atom and cluster catalysts, where the B5 sites and C7 sites are absent, have emerged as promising catalysts for efficient NH3 synthesis. In this review, we focus on the recent advances in single-atom and cluster catalysts, including single-atom catalysts (SACs), single-cluster catalysts (SCCs), and bimetallic-cluster catalysts (BCCs), for thermocatalytic NH3 synthesis at mild conditions. In addition, we discussed and summarized the unique structural properties and reaction performance as well as reaction mechanisms over single-atom and cluster catalysts in comparison with traditional nanoparticle catalysts. Finally, the challenges and prospects in the rational design of efficient single-atom and cluster catalysts for NH3 synthesis were provided.
Collapse
Affiliation(s)
- Xuanbei Peng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Mingyuan Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Tianhua Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Jun Ni
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| |
Collapse
|
3
|
Chowdhury J, Fricke C, Bamidele O, Bello M, Yang W, Heyden A, Terejanu G. Invariant Molecular Representations for Heterogeneous Catalysis. J Chem Inf Model 2024; 64:327-339. [PMID: 38197612 PMCID: PMC10806804 DOI: 10.1021/acs.jcim.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Catalyst screening is a critical step in the discovery and development of heterogeneous catalysts, which are vital for a wide range of chemical processes. In recent years, computational catalyst screening, primarily through density functional theory (DFT), has gained significant attention as a method for identifying promising catalysts. However, the computation of adsorption energies for all likely chemical intermediates present in complex surface chemistries is computationally intensive and costly due to the expensive nature of these calculations and the intrinsic idiosyncrasies of the methods or data sets used. This study introduces a novel machine learning (ML) method to learn adsorption energies from multiple DFT functionals by using invariant molecular representations (IMRs). To do this, we first extract molecular fingerprints for the reaction intermediates and later use a Siamese-neural-network-based training strategy to learn invariant molecular representations or the IMR across all available functionals. Our Siamese network-based representations demonstrate superior performance in predicting adsorption energies compared with other molecular representations. Notably, when considering mean absolute values of adsorption energies as 0.43 eV (PBE-D3), 0.46 eV (BEEF-vdW), 0.81 eV (RPBE), and 0.37 eV (scan+rVV10), our IMR method has achieved the lowest mean absolute errors (MAEs) of 0.18 0.10, 0.16, and 0.18 eV, respectively. These results emphasize the superior predictive capacity of our Siamese network-based representations. The empirical findings in this study illuminate the efficacy, robustness, and dependability of our proposed ML paradigm in predicting adsorption energies, specifically for propane dehydrogenation on a platinum catalyst surface.
Collapse
Affiliation(s)
- Jawad Chowdhury
- Department
of Computer Science, University of North
Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Charles Fricke
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Olajide Bamidele
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Mubarak Bello
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Wenqiang Yang
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Andreas Heyden
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Gabriel Terejanu
- Department
of Computer Science, University of North
Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
4
|
Perco D, Loi F, Bignardi L, Sbuelz L, Lacovig P, Tosi E, Lizzit S, Kartouzian A, Heiz U, Baraldi A. The highest oxidation state observed in graphene-supported sub-nanometer iron oxide clusters. Commun Chem 2023; 6:61. [PMID: 37012362 PMCID: PMC10070315 DOI: 10.1038/s42004-023-00865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Size-selected iron oxide nanoclusters are outstanding candidates for technological-oriented applications due to their high efficiency-to-cost ratio. However, despite many theoretical studies, experimental works on their oxidation mechanism are still limited to gas-phase clusters. Herein we investigate the oxidation of graphene-supported size-selected Fen clusters by means of high-resolution X-ray Photoelectron Spectroscopy. We show a dependency of the core electron Fe 2p3/2 binding energy of metallic and oxidized clusters on the cluster size. Binding energies are also linked to chemical reactivity through the asymmetry parameter which is related to electron density of states at the Fermi energy. Upon oxidation, iron atoms in clusters reach the oxidation state Fe(II) and the absence of other oxidation states indicates a Fe-to-O ratio close to 1:1, in agreement with previous theoretical calculations and gas-phase experiments. Such knowledge can provide a basis for a better understanding of the behavior of iron oxide nanoclusters as supported catalysts.
Collapse
Affiliation(s)
- Deborah Perco
- Department of Physics, University of Trieste, Via Valerio 2, 34127, Trieste, Italy
| | - Federico Loi
- Department of Physics, University of Trieste, Via Valerio 2, 34127, Trieste, Italy
| | - Luca Bignardi
- Department of Physics, University of Trieste, Via Valerio 2, 34127, Trieste, Italy
| | - Luca Sbuelz
- Department of Physics, University of Trieste, Via Valerio 2, 34127, Trieste, Italy
| | - Paolo Lacovig
- Elettra - Sincrotrone Trieste, AREA Science Park, 34149, Trieste, Italy
| | - Ezequiel Tosi
- Elettra - Sincrotrone Trieste, AREA Science Park, 34149, Trieste, Italy
| | - Silvano Lizzit
- Elettra - Sincrotrone Trieste, AREA Science Park, 34149, Trieste, Italy
| | - Aras Kartouzian
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Ueli Heiz
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Alessandro Baraldi
- Department of Physics, University of Trieste, Via Valerio 2, 34127, Trieste, Italy.
- Elettra - Sincrotrone Trieste, AREA Science Park, 34149, Trieste, Italy.
| |
Collapse
|
5
|
Exploring catalytic reaction networks with machine learning. Nat Catal 2023. [DOI: 10.1038/s41929-022-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Wang G, Batista ER, Yang P. N 2-to-NH 3 conversion by excess electrons trapped in point vacancies on 5 f-element dioxide surfaces. Front Chem 2023; 10:1051496. [PMID: 36688046 PMCID: PMC9849761 DOI: 10.3389/fchem.2022.1051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Ammonia (NH3) is one of the basic chemicals in artificial fertilizers and a promising carbon-free energy storage carrier. Its industrial synthesis is typically realized via the Haber-Bosch process using traditional iron-based catalysts. Developing advanced catalysts that can reduce the N2 activation barrier and make NH3 synthesis more efficient is a long-term goal in the field. Most heterogeneous catalysts for N2-to-NH3 conversion are multicomponent systems with singly dispersed metal clusters on supporting materials to activate N2 and H2 molecules. Herein, we report single-component heterogeneous catalysts based on 5f actinide dioxide surfaces (ThO2 and UO2) with oxygen vacancies for N2-to-NH3 conversion. The reaction cycle we propose is enabled by a dual-site mechanism, where N2 and H2 can be activated at different vacancy sites on the same surface; NH3 is subsequently formed by H- migration on the surface via associative pathways. Oxygen vacancies recover to their initial states after the release of two molecules of NH3, making it possible for the catalytic cycle to continue. Our work demonstrates the catalytic activities of oxygen vacancies on 5f actinide dioxide surfaces for N2 activation, which may inspire the search for highly efficient, single-component catalysts that are easy to synthesize and control for NH3 conversion.
Collapse
Affiliation(s)
- Gaoxue Wang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
7
|
Li H, Reuter K. Ab Initio Thermodynamic Stability of Carbide Catalysts under Electrochemical Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haobo Li
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
8
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
9
|
Govindarajan N, Kastlunger G, Heenen HH, Chan K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem Sci 2021; 13:14-26. [PMID: 35059146 PMCID: PMC8694373 DOI: 10.1039/d1sc04775b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022] Open
Abstract
As we are in the midst of a climate crisis, there is an urgent need to transition to the sustainable production of fuels and chemicals. A promising strategy towards this transition is to use renewable energy for the electrochemical conversion of abundant molecules present in the earth's atmosphere such as H2O, O2, N2 and CO2, to synthetic fuels and chemicals. A cornerstone to this strategy is the development of earth abundant electrocatalysts with high intrinsic activity towards the desired products. In this perspective, we discuss the importance and challenges involved in the estimation of intrinsic activity both from the experimental and theoretical front. Through a thorough analysis of published data, we find that only modest improvements in intrinsic activity of electrocatalysts have been achieved in the past two decades which necessitates the need for a paradigm shift in electrocatalyst design. To this end, we highlight opportunities offered by tuning three components of the electrochemical environment: cations, buffering anions and the electrolyte pH. These components can significantly alter catalytic activity as demonstrated using several examples, and bring us a step closer towards complete system level optimization of electrochemical routes to sustainable energy conversion.
Collapse
Affiliation(s)
- Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Hendrik H Heenen
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark .,Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| |
Collapse
|
10
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
11
|
Li H, Liu Y, Chen K, Margraf JT, Li Y, Reuter K. Subgroup Discovery Points to the Prominent Role of Charge Transfer in Breaking Nitrogen Scaling Relations at Single-Atom Catalysts on VS 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01324] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Haobo Li
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Yunxia Liu
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Ke Chen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Johannes T. Margraf
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
12
|
Andersen M, Reuter K. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors. Acc Chem Res 2021; 54:2741-2749. [PMID: 34080415 DOI: 10.1021/acs.accounts.1c00153] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heterogeneous catalysts are rather complex materials that come in many classes (e.g., metals, oxides, carbides) and shapes. At the same time, the interaction of the catalyst surface with even a relatively simple gas-phase environment such as syngas (CO and H2) may already produce a wide variety of reaction intermediates ranging from atoms to complex molecules. The starting point for creating predictive maps of, e.g., surface coverages or chemical activities of potential catalyst materials is the reliable prediction of adsorption enthalpies of all of these intermediates. For simple systems, direct density functional theory (DFT) calculations are currently the method of choice. However, a wider exploration of complex materials and reaction networks generally requires enthalpy predictions at lower computational cost.The use of machine learning (ML) and related techniques to make accurate and low-cost predictions of quantum-mechanical calculations has gained increasing attention lately. The employed approaches span from physically motivated models over hybrid physics-ΔML approaches to complete black-box methods such as deep neural networks. In recent works we have explored the possibilities for using a compressed sensing method (Sure Independence Screening and Sparsifying Operator, SISSO) to identify sparse (low-dimensional) descriptors for the prediction of adsorption enthalpies at various active-site motifs of metals and oxides. We start from a set of physically motivated primary features such as atomic acid/base properties, coordination numbers, or band moments and let the data and the compressed sensing method find the best algebraic combination of these features. Here we take this work as a starting point to categorize and compare recent ML-based approaches with a particular focus on model sparsity, data efficiency, and the level of physical insight that one can obtain from the model.Looking ahead, while many works to date have focused only on the mere prediction of databases of, e.g., adsorption enthalpies, there is also an emerging interest in our field to start using ML predictions to answer fundamental science questions about the functioning of heterogeneous catalysts or perhaps even to design better catalysts than we know today. This task is significantly simplified in works that make use of scaling-relation-based models (volcano curves), where the model outcome is determined by only one or two adsorption enthalpies and which consequently become the sole target for ML-based high-throughput screening or design. However, the availability of cheap ML energetics also allows going beyond scaling relations. On the basis of our own work in this direction, we will discuss the additional physical insight that can be achieved by integrating ML-based predictions with traditional catalysis modeling techniques from thermal and electrocatalysis, such as the computational hydrogen electrode and microkinetic modeling, as well as the challenges that lie ahead.
Collapse
Affiliation(s)
- Mie Andersen
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Physics and Astronomy - Center for Interstellar Catalysis, Aarhus University, DK-8000 Aarhus C, Denmark
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
13
|
Gazzarrini E, Rossi K, Baletto F. Born to be different: the formation process of Cu nanoparticles tunes the size trend of the activity for CO 2 to CH 4 conversion. NANOSCALE 2021; 13:5857-5867. [PMID: 33720246 DOI: 10.1039/d0nr07889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the impact of the formation process of Cu nanoparticles on the distribution of adsorption sites and hence on their activity. Using molecular dynamics, we model formation pathways characteristic of physical synthesis routes as the annealing of a liquid droplet, the growth proceeding via the addition of single atoms, and the coalescence of individual nanoparticles. Each formation process leads to different and characteristic size-dependent distributions of their adsorption sites, catalogued and monitored on-the-fly by means of a suitable geometrical descriptor. Annealed or coalesced nanoparticles present a rather homogeneous distribution in the kind and relative abundance of non-equivalent adsorption sites. Atom-by-atom grown nanoparticles, instead, exhibit a more marked occurrence of adsorption sites corresponding to adatoms and small islands on (111) and (100) facets. Regardless of the formation process, highly coordinated sites are more likely in larger nanoparticles, while the abundance of low-coordination sites depends on the formation process and on the nanoparticle size. Furthermore, we show how each characteristic distribution of adsorption sites reflects in different size trends for the Cu-nanoparticle activity, taking as an example the electro-reduction of CO2 into CH4. To this end, we employ a multi-scale method and observe that the faceted but highly defected structures obtained during the atom-by-atom growth become more and more active with increasing size, with a mild dependence on the original seed. In contrast, the activity of Cu-nanoparticles obtained by annealing decreases with their size, while coalesced nanoparticles' activity shows a non-monotonic behaviour.
Collapse
Affiliation(s)
- Elena Gazzarrini
- Physics Department, King's College London, WC2R 2LS, London, UK.
| | | | | |
Collapse
|
14
|
Wang M, Zhao CY, Zhou HY, Zhao Y, Li YK, Ma JB. The sequential activation of H 2 and N 2 mediated by the gas-phase Sc 3N + clusters: Formation of amido unit. J Chem Phys 2021; 154:054307. [PMID: 33557555 DOI: 10.1063/5.0029180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The activation and hydrogenation of nitrogen are central in industry and in nature. Through a combination of mass spectrometry and quantum chemical calculations, this work reports an interesting result that scandium nitride cations Sc3N+ can activate sequentially H2 and N2, and an amido unit (NH2) is formed based on density functional theory calculations, which is one of the inevitable intermediates in the N2 reduction reactions. If the activation step is reversed, i.e., sequential activation of first N2 and then H2, the reactivity decreases dramatically. An association mechanism, prevalent in some homogeneous catalysis and enzymatic mechanisms, is adopted in these gas-phase H2 and N2 activation reactions mediated by Sc3N+ cations. The mechanistic insights are important to understand the mechanism of the conversion of H2 and N2 to NH3 synthesis under ambient conditions.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Chong-Yang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Hai-Yan Zhou
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Yue Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Ya-Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstr. 2, 04103 Leipzig, Germany
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
15
|
Deimel M, Reuter K, Andersen M. Active Site Representation in First-Principles Microkinetic Models: Data-Enhanced Computational Screening for Improved Methanation Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Deimel
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Mie Andersen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
16
|
Li H, Reuter K. Active-Site Computational Screening: Role of Structural and Compositional Diversity for the Electrochemical CO2 Reduction at Mo Carbide Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haobo Li
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
17
|
Harris JW, Bates JS, Bukowski BC, Greeley J, Gounder R. Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- James W. Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Jason S. Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brandon C. Bukowski
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Li L, Chang X, Lin X, Zhao ZJ, Gong J. Theoretical insights into single-atom catalysts. Chem Soc Rev 2020; 49:8156-8178. [DOI: 10.1039/d0cs00795a] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schematic diagram of theoretical models and applications of single atom catalysts. A review on the theoretical models, intrinsic properties, and the related application of SACs.
Collapse
Affiliation(s)
- Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaoyun Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
19
|
Kick M, Oberhofer H. Towards a transferable design of solid-state embedding models on the example of a rutile TiO2 (110) surface. J Chem Phys 2019; 151:184114. [DOI: 10.1063/1.5125204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Kick
- Chair for Theoretical Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | - H. Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
20
|
Styskalik A, Abbott JG, Orick MC, Debecker DP, Barnes CE. Synthesis, characterization and catalytic activity of single site, Lewis acidic aluminosilicates. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Bruix A, Margraf JT, Andersen M, Reuter K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0298-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Margraf JT, Reuter K. Systematic Enumeration of Elementary Reaction Steps in Surface Catalysis. ACS OMEGA 2019; 4:3370-3379. [PMID: 31459551 PMCID: PMC6648403 DOI: 10.1021/acsomega.8b03200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 06/01/2023]
Abstract
The direct synthesis of complex chemicals from simple precursors (such as syngas) is one of the main objectives of current research in heterogeneous catalysis. To rationally design catalytic materials for this purpose, it is essential to identify the critical elementary reaction steps that ultimately determine a catalyst's activity and selectivity with respect to a desired product. Unfortunately, the number of potentially relevant elementary steps is in the thousands, even for relatively simple target species like ethanol. The challenge of identifying the critical steps is thus akin to finding the proverbial needle in a haystack. Recently, a model-reduction scheme has been proposed, which tackles this problem by prescreening the barriers of all potential reactions with computationally inexpensive approximations. Although this route appears highly promising, it raises the question of how the starting point of the model-reduction process can be determined. In this contribution, we present a systematic method for enumerating all intermediates and elementary reactions relevant to a chemical process of interest. Using this approach, we construct reaction networks for C,H,O-containing systems consisting of up to four non-hydrogen atoms (more than 1 million reactions). Importantly, the scheme goes beyond simple bond-breaking reactions and allows considering rearrangement and transfer reactions as well. The presented reaction networks thus cover the chemistry of syngas-based processes (and beyond) to an unprecedented scale.
Collapse
|
23
|
Andersen M, Levchenko SV, Scheffler M, Reuter K. Beyond Scaling Relations for the Description of Catalytic Materials. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04478] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mie Andersen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Sergey V. Levchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Matthias Scheffler
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
24
|
Wang CM, Wang YD, Xie ZK. General scaling relations and prediction of transition state energies in CHA/AlPO-34-structured zeolite catalysis related to the methanol-to-olefins conversion. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00534j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Scaling relations of transition state (TS) energies with the acid strength were established. The inherent scaling relations and the acidity sensitivity dependence on charge variation enable fast prediction of TS energies in zeolite catalysis.
Collapse
Affiliation(s)
- Chuan-Ming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Yang-Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Zai-Ku Xie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| |
Collapse
|
25
|
Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J, Pidko EA, Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 2018; 47:8307-8348. [PMID: 30204184 PMCID: PMC6240816 DOI: 10.1039/c8cs00398j] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/19/2022]
Abstract
An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination.
Collapse
Affiliation(s)
- Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Anton A. Bondarenko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Mikhail V. Polynski
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Jittima Meeprasert
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Evgeny A. Pidko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| |
Collapse
|
26
|
Hellwig R, Uphoff M, Paintner T, Björk J, Ruben M, Klappenberger F, Barth JV. Ho-Mediated Alkyne Reactions at Low Temperatures on Ag(111). Chemistry 2018; 24:16126-16135. [PMID: 30039631 DOI: 10.1002/chem.201803102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 11/05/2022]
Abstract
Low-temperature approaches to catalytic conversions promise efficiency, selectivity, and sustainable processes. Control over certain coupling reactions can be obtained via the pre-positioning of reactive moieties by self-assembly. However, in the striving field of on-surface synthesis atomistic precision and control remains largely elusive, because the employed coupling reactions proceed at temperatures beyond the thermal stability of the supramolecular templates. Here, utilizing scanning tunneling microscopy, we demonstrate terminal alkyne on-surface reactions mediated by Ho atoms at a weakly reactive Ag(111) substrate at low-temperatures. Density functional theory calculations confirm the catalytic activity of the involved adatoms. Pre-deposited Ho induces alkyne dehydrogenation starting at substrate temperatures as low as 100 K. Ho arriving at molecularly pre-covered surfaces held at 130 and 200 K produces covalent enyne-linked dimers and initiates cyclotrimerization, respectively. Statistical product analysis indicates a two-step pathway for the latter, whereby the enyne intermediates influence the distribution of the products. High chemoselectivity results from the absence of cyclotetramerization and diyne-forming homocoupling. Our analysis indicates that mainly the arriving Ho adatoms enable the coupling. These findings support the concept of dynamic heterogeneity by single-atom catalysts and pave the way for alternative means to control on-surface reactions.
Collapse
Affiliation(s)
- Raphael Hellwig
- Physics Department E20, Technical University of Munich, 85748, Garching, Germany
| | - Martin Uphoff
- Physics Department E20, Technical University of Munich, 85748, Garching, Germany
| | - Tobias Paintner
- Physics Department E20, Technical University of Munich, 85748, Garching, Germany
| | - Jonas Björk
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Mario Ruben
- Institute für Nanotechnologie, Karlsruher Institut für Technologie (KIT), 76344, Eggenstein-Leopoldshafen, Germany.,Institut de Physique et Chimie de Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 67034, Strasbourg, France
| | | | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
27
|
Andersen M, Plaisance CP, Reuter K. Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo. J Chem Phys 2018; 147:152705. [PMID: 29055323 DOI: 10.1063/1.4989511] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM) catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such models for the specific case of CO methanation over stepped metals by comparing to spatially resolved kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by metal surfaces can be significantly increased at step sites, which results in persisting correlations in the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at a higher computational cost, which can be especially challenging for surface reactions on metals due to a large disparity in the time scales of different processes. In order to overcome this issue, we implement and test a recently developed algorithm for achieving temporal acceleration of kMC simulations. While the algorithm overall performs quite well, we identify some challenging cases which may lead to a breakdown of acceleration algorithms and discuss possible directions for future algorithm development.
Collapse
Affiliation(s)
- Mie Andersen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Craig P Plaisance
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| |
Collapse
|
28
|
Liu JC, Ma XL, Li Y, Wang YG, Xiao H, Li J. Heterogeneous Fe 3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun 2018; 9:1610. [PMID: 29686395 PMCID: PMC5913218 DOI: 10.1038/s41467-018-03795-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
The current industrial ammonia synthesis relies on Haber–Bosch process that is initiated by the dissociative mechanism, in which the adsorbed N2 dissociates directly, and thus is limited by Brønsted–Evans–Polanyi (BEP) relation. Here we propose a new strategy that an anchored Fe3 cluster on the θ-Al2O3(010) surface as a heterogeneous catalyst for ammonia synthesis from first-principles theoretical study and microkinetic analysis. We have studied the whole catalytic mechanism for conversion of N2 to NH3 on Fe3/θ-Al2O3(010), and find that an associative mechanism, in which the adsorbed N2 is first hydrogenated to NNH, dominates over the dissociative mechanism, which we attribute to the large spin polarization, low oxidation state of iron, and multi-step redox capability of Fe3 cluster. The associative mechanism liberates the turnover frequency (TOF) for ammonia production from the limitation due to the BEP relation, and the calculated TOF on Fe3/θ-Al2O3(010) is comparable to Ru B5 site. The current industrial ammonia synthesis relies on the Haber-Bosch process that is limited by the Brønsted–Evans–Polanyi relation. Here, the authors propose a new strategy that an anchored Fe3 on θ-Al2O3(010) surface serves as a heterogeneous single cluster catalyst for ammonia synthesis from first-principles calculations and microkinetic analysis.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xue-Lu Ma
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yong Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yang-Gang Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Yao Z, Reuter K. First-Principles Computational Screening of Dopants to Improve the Deacon Process over RuO2. ChemCatChem 2017. [DOI: 10.1002/cctc.201701313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhen Yao
- Chair for Theoretical Chemistry and Catalysis Research Center; Technische Universität München; Lichtenbergstrasse 4 D-85748 Garching Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center; Technische Universität München; Lichtenbergstrasse 4 D-85748 Garching Germany
| |
Collapse
|
30
|
Liu C, Tranca I, van Santen RA, Hensen EJM, Pidko EA. Scaling Relations for Acidity and Reactivity of Zeolites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23520-23530. [PMID: 29142616 PMCID: PMC5677757 DOI: 10.1021/acs.jpcc.7b08176] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/02/2017] [Indexed: 05/22/2023]
Abstract
Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology.
Collapse
Affiliation(s)
- Chong Liu
- Inorganic
Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ionut Tranca
- Inorganic
Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rutger A. van Santen
- Inorganic
Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Inorganic
Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Evgeny A. Pidko
- Inorganic
Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- ITMO
University, Lomonosova
9, St. Petersburg, 191002, Russia
| |
Collapse
|
31
|
Calle-Vallejo F, Koper MTM. Accounting for Bifurcating Pathways in the Screening for CO2 Reduction Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02917] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Calle-Vallejo
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
32
|
Lanzafame P, Perathoner S, Centi G, Gross S, Hensen EJM. Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01067b] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective discusses the general concepts that will guide future catalysis and related grand challenges based on the Science and Technology Roadmap on Catalysis for Europe prepared by the European Cluster on Catalysis.
Collapse
Affiliation(s)
- P. Lanzafame
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - S. Perathoner
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - G. Centi
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - S. Gross
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia
- ICMATE-CNR
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
| | - E. J. M. Hensen
- Laboratory of Inorganic Materials Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
33
|
Kronberg R, Hakala M, Holmberg N, Laasonen K. Hydrogen adsorption on MoS2-surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage. Phys Chem Chem Phys 2017; 19:16231-16241. [DOI: 10.1039/c7cp03068a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
H-Adsorption on MoS2-surfaces is studied as a function of structural parameters and an assessment of the intricate structure–property relations is conducted.
Collapse
Affiliation(s)
- Rasmus Kronberg
- Research Group of Computational Chemistry
- Department of Chemistry and Materials Science
- Aalto University
- P.O. Box 16100
- FI-00076 Aalto
| | - Mikko Hakala
- Research Group of Computational Chemistry
- Department of Chemistry and Materials Science
- Aalto University
- P.O. Box 16100
- FI-00076 Aalto
| | - Nico Holmberg
- Research Group of Computational Chemistry
- Department of Chemistry and Materials Science
- Aalto University
- P.O. Box 16100
- FI-00076 Aalto
| | - Kari Laasonen
- Research Group of Computational Chemistry
- Department of Chemistry and Materials Science
- Aalto University
- P.O. Box 16100
- FI-00076 Aalto
| |
Collapse
|