1
|
Tripathi S, Voogdt CGP, Bassler SO, Anderson M, Huang PH, Sakenova N, Capraz T, Jain S, Koumoutsi A, Bravo AM, Trotter V, Zimmerman M, Sonnenburg JL, Buie C, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals I: Strategies for efficient library construction. Cell Rep 2024; 43:113517. [PMID: 38142397 DOI: 10.1016/j.celrep.2023.113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.
Collapse
Affiliation(s)
- Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Mary Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nazgul Sakenova
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tümay Capraz
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentine Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Zimmerman
- Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Justin L Sonnenburg
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Wu J, Zhang M, Huang J, Guan J, Hu C, Shi M, Hu S, Wang S, Ma H. Enhanced absorbance detection system for online bacterial monitoring in digital microfluidics. Analyst 2023; 148:4659-4667. [PMID: 37615041 DOI: 10.1039/d3an01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We report a fully integrated digital microfluidic absorbance detection system with an enhanced sensitivity for online bacterial monitoring. Through a 100 μm gap in the chip, our optical detection system has a detection sensitivity for a BCA protein concentration of 0.1 mg mL-1. The absorbance detection limit of our system is 1.4 × 10-3 OD units, which is one order of magnitude better than that of the existing studies. The system's linear region is 0.1-7 mg mL-1, and the dynamic range is 0-25 mg mL-1. We measured the growth curves of wild-type and E. coli transformed with resistance plasmids and mixed at different ratios on chip. We sorted out the bacterial species including highly viable single cells based on the difference in absorbance data of growth curves. We explored the changes in the growth curves of E. coli under different concentrations of resistant media. In addition, we successfully screened for the optimal growth environment of the bacteria, in which the growth rate of PET30a-DH5α (in a medium with 33 μg mL-1 kanamycin resistance) was significantly higher than that of a 1 mg mL-1 resistance medium. In conclusion, the enhanced digital microfluidic absorbance detection system exhibits exceptional sensitivity, enabling precise bacterial monitoring and growth curve analysis, while also laying the foundation for DMF-based automated bioresearch platforms, thus advancing research in the life sciences.
Collapse
Affiliation(s)
- Jingya Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China.
| | - Maolin Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
| | - Jianle Huang
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| | - Jingxin Guan
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| | - Chenxuan Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
| | - Mude Shi
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| |
Collapse
|
3
|
Tong Z, Shen C, Li Q, Yin H, Mao H. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications. Analyst 2023; 148:1399-1421. [PMID: 36752059 DOI: 10.1039/d2an01707e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The concept of digital microfluidics (DMF) enables highly flexible and precise droplet manipulation at a picoliter scale, making DMF a promising approach to realize integrated, miniaturized "lab-on-a-chip" (LOC) systems for research and clinical purposes. Owing to its simplicity and effectiveness, electrowetting-on-dielectric (EWOD) is one of the most commonly studied and applied effects to implement DMF. However, complex biomedical assays usually require more sophisticated sample handling and detection capabilities than basic EWOD manipulation. Alternatively, combined systems integrating EWOD actuators and other fluidic handling techniques are essential for bringing DMF into practical use. In this paper, we briefly review the main approaches for the integration/combination of EWOD with other microfluidic manipulation methods or additional external fields for specified biomedical applications. The form of integration ranges from independently operating sub-systems to fully coupled hybrid actuators. The corresponding biomedical applications of these works are also summarized to illustrate the significance of these innovative combination attempts.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hao Yin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
4
|
Nemr CR, Sklavounos AA, Wheeler AR, Kelley SO. Digital microfluidics as an emerging tool for bacterial protocols. SLAS Technol 2023; 28:2-15. [PMID: 36323389 DOI: 10.1016/j.slast.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Bacteria are widely studied in various research areas, including synthetic biology, sequencing and diagnostic testing. Protocols involving bacteria are often multistep, cumbersome and require access to a long list of instruments to perform experiments. In order to streamline these processes, the fluid handling technique digital microfluidics (DMF) has provided a miniaturized platform to perform various steps of bacterial protocols from sample preparation to analysis. DMF devices can be paired/interfaced with instrumentation such as microscopes, plate readers, and incubators, demonstrating their versatility with existing research tools. Alternatively, DMF instruments can be integrated into all-in-one packages with on-chip magnetic separation for sample preparation, heating/cooling modules to perform assay steps and cameras for absorbance and/or fluorescence measurements. This perspective outlines the beneficial features DMF offers to bacterial protocols, highlights limitations of current work and proposes future directions for this tool's expansion in the field.
Collapse
Affiliation(s)
- Carine R Nemr
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA, 91711, USA; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
5
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
6
|
Iwai K, Wehrs M, Garber M, Sustarich J, Washburn L, Costello Z, Kim PW, Ando D, Gaillard WR, Hillson NJ, Adams PD, Mukhopadhyay A, Garcia Martin H, Singh AK. Scalable and automated CRISPR-based strain engineering using droplet microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:31. [PMID: 35359611 PMCID: PMC8924257 DOI: 10.1038/s41378-022-00357-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
We present a droplet-based microfluidic system that enables CRISPR-based gene editing and high-throughput screening on a chip. The microfluidic device contains a 10 × 10 element array, and each element contains sets of electrodes for two electric field-actuated operations: electrowetting for merging droplets to mix reagents and electroporation for transformation. This device can perform up to 100 genetic modification reactions in parallel, providing a scalable platform for generating the large number of engineered strains required for the combinatorial optimization of genetic pathways and predictable bioengineering. We demonstrate the system's capabilities through the CRISPR-based engineering of two test cases: (1) disruption of the function of the enzyme galactokinase (galK) in E. coli and (2) targeted engineering of the glutamine synthetase gene (glnA) and the blue-pigment synthetase gene (bpsA) to improve indigoidine production in E. coli.
Collapse
Affiliation(s)
- Kosuke Iwai
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Maren Wehrs
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Megan Garber
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jess Sustarich
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Lauren Washburn
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Zachary Costello
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Peter W. Kim
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - David Ando
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - William R. Gaillard
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Nathan J. Hillson
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Paul D. Adams
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Aindrila Mukhopadhyay
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Hector Garcia Martin
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- BCAM, Basque Center for Applied Mathematics, Bilbao, 48009 Spain
| | - Anup K. Singh
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA
| |
Collapse
|
7
|
Gerlt MS, Ruppen P, Leuthner M, Panke S, Dual J. Acoustofluidic medium exchange for preparation of electrocompetent bacteria using channel wall trapping. LAB ON A CHIP 2021; 21:4487-4497. [PMID: 34668506 PMCID: PMC8577197 DOI: 10.1039/d1lc00406a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 06/02/2023]
Abstract
Comprehensive integration of process steps into a miniaturised version of synthetic biology workflows remains a crucial task in automating the design of biosystems. However, each of these process steps has specific demands with respect to the environmental conditions, including in particular the composition of the surrounding fluid, which makes integration cumbersome. As a case in point, transformation, i.e. reprogramming of bacteria by delivering exogenous genetic material (such as DNA) into the cytoplasm, is a key process in molecular engineering and modern biotechnology in general. Transformation is often performed by electroporation, i.e. creating pores in the membrane using electric shocks in a low conductivity environment. However, cell preparation for electroporation can be cumbersome as it requires the exchange of growth medium (high-conductivity) for low-conductivity medium, typically performed via multiple time-intensive centrifugation steps. To simplify and miniaturise this step, we developed an acoustofluidic device capable of trapping the bacterium Escherichia coli non-invasively for subsequent exchange of medium, which is challenging in acoustofluidic devices due to detrimental acoustic streaming effects. With an improved etching process, we were able to produce a thin wall between two microfluidic channels, which, upon excitation, can generate streaming fields that complement the acoustic radiation force and therefore can be utilised for trapping of bacteria. Our novel design robustly traps Escherichia coli at a flow rate of 10 μL min-1 and has a cell recovery performance of 47 ± 3% after washing the trapped cells. To verify that the performance of the medium exchange device is sufficient, we tested the electrocompetence of the recovered cells in a standard transformation procedure and found a transformation efficiency of 8 × 105 CFU per μg of plasmid DNA. Our device is a low-volume alternative to centrifugation-based methods and opens the door for miniaturisation of a plethora of microbiological and molecular engineering protocols.
Collapse
Affiliation(s)
- M S Gerlt
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - P Ruppen
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - M Leuthner
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - S Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - J Dual
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
8
|
Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, Jones MA, Kunjapur AM, Nyerges A, Pal C, Schubert MG, Church GM. Recombineering and MAGE. NATURE REVIEWS. METHODS PRIMERS 2021; 1:7. [PMID: 35540496 PMCID: PMC9083505 DOI: 10.1038/s43586-020-00006-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.
Collapse
Affiliation(s)
- Timothy M. Wannier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Peter N. Ciaccia
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Gabriel T. Filsinger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Michaela A. Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Aditya M. Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Csaba Pal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Moazami E, Perry JM, Soffer G, Husser MC, Shih SCC. Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays. Anal Chem 2019; 91:5159-5168. [DOI: 10.1021/acs.analchem.8b05754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ehsan Moazami
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - James M. Perry
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Mathieu C. Husser
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| |
Collapse
|
10
|
Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. Droplet microfluidics for synthetic biology. LAB ON A CHIP 2017; 17:3388-3400. [PMID: 28820204 DOI: 10.1039/c7lc00576h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.
Collapse
Affiliation(s)
- Philip C Gach
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|
11
|
Madison AC, Royal MW, Vigneault F, Chen L, Griffin PB, Horowitz M, Church GM, Fair RB. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform. ACS Synth Biol 2017; 6:1701-1709. [PMID: 28569062 DOI: 10.1021/acssynbio.7b00007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg-1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm-1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.
Collapse
Affiliation(s)
- Andrew C. Madison
- Department
of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Matthew W. Royal
- Department
of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Frederic Vigneault
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Liji Chen
- Department
of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Peter B. Griffin
- Stanford
Genome Technology Center, Stanford University, Palo Alto, California 94304, United States
| | | | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
- Department
of Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Richard B. Fair
- Department
of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Alistar M, Gaudenz U. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering (Basel) 2017; 4:E45. [PMID: 28952524 PMCID: PMC5590459 DOI: 10.3390/bioengineering4020045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/06/2023] Open
Abstract
Biochips, or digital labs-on-chip, are developed with the purpose of being used by laboratory technicians or biologists in laboratories or clinics. In this article, we expand this vision with the goal of enabling everyone, regardless of their expertise, to use biochips for their own personal purposes. We developed OpenDrop, an integrated electromicrofluidic platform that allows users to develop and program their own bio-applications. We address the main challenges that users may encounter: accessibility, bio-protocol design and interaction with microfluidics. OpenDrop consists of a do-it-yourself biochip, an automated software tool with visual interface and a detailed technique for at-home operations of microfluidics. We report on two years of use of OpenDrop, released as an open-source platform. Our platform attracted a highly diverse user base with participants originating from maker communities, academia and industry. Our findings show that 47% of attempts to replicate OpenDrop were successful, the main challenge remaining the assembly of the device. In terms of usability, the users managed to operate their platforms at home and are working on designing their own bio-applications. Our work provides a step towards a future in which everyone will be able to create microfluidic devices for their personal applications, thereby democratizing parts of health care.
Collapse
|