1
|
Sun ZF, Scheidsbach RJA, van Hemert MC, van der Avoird A, Suits AG, Parker DH. Imaging rotational energy transfer: comparative stereodynamics in CO + N 2 and CO + CO inelastic scattering. Phys Chem Chem Phys 2023. [PMID: 37377093 DOI: 10.1039/d3cp02229c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13CO molecules with N2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13CO + CO rotationally inelastic scattering described in a previously published report (Sun et al., Science, 2020, 369, 307-309). The collisionally excited 13CO molecule products are detected by the same (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13CO + N2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13CO-N2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13CO-N2 potential energy surface for the 1460 cm-1 collision energy studied by experiment. Experimental results for 13CO + N2 are compared with those for 13CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13CO + CO measurements, the primary rainbow maximum in the DCSs for 13CO + N2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13CO-N2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13CO + CO does not appear for 13CO-N2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13CO + N2 trajectories compared to 13CO + CO trajectories, which shows the special 'do-si-do' pathway invoked for 13CO + CO is not effective for 13CO + N2 collisions.
Collapse
Affiliation(s)
- Zhong-Fa Sun
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Roy J A Scheidsbach
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Marc C van Hemert
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - David H Parker
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Sakkoula E, Sharma G, Wang X, North SW, Parker DH, Wei W. Dynamics and vector correlations of vacuum ultraviolet (VUV) photodissociation of CO 2 at 155 nm. Phys Chem Chem Phys 2022; 24:2592-2600. [PMID: 35029267 DOI: 10.1039/d1cp04628d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the CO2 Vacuum Ultraviolet (VUV) photodissociation dynamics of the dominant O(1D) channel near 155 nm have been studied using Velocity Map Imaging (VMI) technique. Correlations among the transition dipole moment of the parent molecule, recoil velocity vector and rotational angular momentum vector of the photofragments were extracted from the anisotropic angular distributions of the images. The vector correlations extracted indicated a picture of photodissociation mainly via the excited 21A' (A) state. The transition dipole moment lies in the bending molecular plane, and the j⃑ is pointing perpendicular to the plane, while the μ-v vectors angle is between 41°-45°. In addition, a clear trend was observed. As the product CO rotational state j increases, the spatial anisotropy parameter (β ≡ 2β20(20)) decreases. This j-dependent attenuation of spatial anisotropy parameter can be explained mainly with the consideration of non-axial recoil effect. These results are in good agreement with both theoretical work and previous experimental work.
Collapse
Affiliation(s)
- Evangelia Sakkoula
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Gautam Sharma
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology, Hefei 230026, China
| | - Simon W North
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - David H Parker
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Wei Wei
- Department of Chemistry and Physics, Franklin College, Franklin, Indiana, USA.
| |
Collapse
|
3
|
Wang Y, Wei J, Cao L, Zhang B, Zhang S. The ultrafast nonradiative processes and photodissociation dynamics investigation of S1 state in propanal. J Chem Phys 2022; 156:074306. [DOI: 10.1063/5.0077490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yanmei Wang
- Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology CAS, China
| | - Jie Wei
- Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, China
| | - Ling Cao
- Innovation Academy for Precision Measurement Science and Technology CAS, China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, China
| |
Collapse
|
4
|
Plomp V, Wang XD, Lique F, Kłos J, Onvlee J, van de Meerakker SYT. High-Resolution Imaging of C + He Collisions using Zeeman Deceleration and Vacuum-Ultraviolet Detection. J Phys Chem Lett 2021; 12:12210-12217. [PMID: 34928163 PMCID: PMC8724800 DOI: 10.1021/acs.jpclett.1c03643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
High-resolution measurements of angular scattering distributions provide a sensitive test for theoretical descriptions of collision processes. Crossed beam experiments employing a decelerator and velocity map imaging have proven successful to probe collision cross sections with extraordinary resolution. However, a prerequisite to exploit these possibilities is the availability of a near-threshold state-selective ionization scheme to detect the collision products, which for many species is either absent or inefficient. We present the first implementation of recoil-free vacuum ultraviolet (VUV) based detection in scattering experiments involving a decelerator and velocity map imaging. This allowed for high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated carbon C(3P1) atoms and helium atoms. We fully resolved diffraction oscillations in the angular distributions, which showed excellent agreement with the distributions predicted by quantum scattering calculations. Our approach offers exciting prospects to investigate a large range of scattering processes with unprecedented precision.
Collapse
Affiliation(s)
- Vikram Plomp
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Xu-Dong Wang
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- Université
de Rennes, Institut de Physique de Rennes, 263 avenue du Général
Leclerc, Rennes 35042 CEDEX, France
| | - Jacek Kłos
- University
of Maryland, Department of Physics, Joint
Quantum Institute, College Park, Maryland 20742, United States of America
| | - Jolijn Onvlee
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
5
|
Sun ZF, van Hemert MC, Loreau J, van der Avoird A, Suits AG, Parker DH. Molecular square dancing in CO-CO collisions. Science 2020; 369:307-309. [PMID: 32675372 DOI: 10.1126/science.aan2729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/22/2020] [Indexed: 11/02/2022]
Abstract
Knowledge of rotational energy transfer (RET) involving carbon monoxide (CO) molecules is crucial for the interpretation of astrophysical data. As of now, our nearly perfect understanding of atom-molecule scattering shows that RET usually occurs by only a simple "bump" between partners. To advance molecular dynamics to the next step in complexity, we studied molecule-molecule scattering in great detail for collision between two CO molecules. Using advanced imaging methods and quasi-classical and fully quantum theory, we found that a synchronous movement can occur during CO-CO collisions, whereby a bump is followed by a move similar to a "do-si-do" in square dancing. This resulted in little angular deflection but high RET to both partners, a very unusual combination. The associated conditions suggest that this process can occur in other molecule-molecule systems.
Collapse
Affiliation(s)
- Zhong-Fa Sun
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.,Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Marc C van Hemert
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Jérôme Loreau
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - David H Parker
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| |
Collapse
|
6
|
Sun ZF, Bishwakarma CK, Song L, van der Avoird A, van Hemert MC, Suits AG, McBane GC, Parker DH. Imaging inelastic scattering of CO with argon: polarization dependent differential cross sections. Phys Chem Chem Phys 2019; 21:9200-9211. [DOI: 10.1039/c9cp00876d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rotationally inelastic scattering of carbon monoxide (CO) with argon at a collision energy of 700 cm−1 has been investigated by measuring polarization dependent differential scattering cross sections (PDDCSs) for rotationally excited CO molecules using a crossed molecular beam apparatus coupled with velocity-map ion imaging.
Collapse
Affiliation(s)
- Zhong-Fa Sun
- Department of Molecular and Laser Physics
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Chandan K. Bishwakarma
- Department of Molecular and Laser Physics
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Lei Song
- Theoretical Chemistry
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Ad van der Avoird
- Theoretical Chemistry
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Marc C. van Hemert
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- 2333 CC Leiden
- The Netherlands
| | - Arthur G. Suits
- Department of Chemistry
- University of Missouri
- Columbia MO 65211
- USA
| | - George C. McBane
- Department of Chemistry
- Grand Valley State University
- Allendale
- USA
| | - David H. Parker
- Department of Molecular and Laser Physics
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
7
|
Sun ZF, Scheidsbach RJA, Suits AG, Parker DH. Imaging multiphoton ionization and dissociation of rotationally warm CO via the B +Σ 1 and EΠ1 electronic states. J Chem Phys 2017; 147:013906. [PMID: 28688406 DOI: 10.1063/1.4973677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathways for formation of C+ and O+ ions when applying (2 + 1) resonance enhanced multiphoton ionization (REMPI) of CO via the B1Σ+ and E1Π electronic states are characterized with the velocity map imaging technique. By employing an unskimmed pulsed valve, it was possible to obtain sharp images for a wide range of initial CO J-states. Most of the atomic ion production pathways could be assigned as one- or two-photon dissociation of a series of vibrational levels of the CO+ X2Σ+ and A2Π states. Large enhancements in dissociation of particular CO+ vibrational states in these progressions could be accurately assigned to accidental resonances of the REMPI laser with CO+ X2Σ+-B2Σ+ transitions.
Collapse
Affiliation(s)
- Z-F Sun
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - R J A Scheidsbach
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - A G Suits
- Chemistry Department, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, USA
| | - D H Parker
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|