1
|
Park JW. Analytical nuclear gradient and derivative coupling theories for multireference perturbation methods. Phys Chem Chem Phys 2025; 27:3531-3551. [PMID: 39895376 DOI: 10.1039/d4cp03671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Electron correlations should be appropriately included in quantum chemistry calculations to accurately describe the energy and wave functions. In multiconfigurational methods, the reference functions are written as linear combinations of multiple electronic configurations to describe static correlations. Using the multiconfigurational reference functions, it is also possible to correct for dynamical correlations using various methods. Geometry optimizations and dynamics simulations are among the most prominent applications of quantum chemistry methods. Such applications become much more straightforward when analytical nuclear gradients are available. Many efficient algorithms for computing analytical nuclear gradients and derivative coupling using multireference perturbation theories (MRPTs) have recently been developed. This work aims to provide a comprehensive and easy-to-follow review of analytical gradient theories and the properties of methods for obtaining analytical gradients and derivative coupling methods using MRPTs. We also briefly review the practical applications of these methods in performing nonadiabatic dynamics simulations.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea.
| |
Collapse
|
2
|
Feldmann R, Mörchen M, Lang J, Lesiuk M, Reiher M. Complete Active Space Iterative Coupled Cluster Theory. J Phys Chem A 2024; 128:8615-8627. [PMID: 39344976 PMCID: PMC11472348 DOI: 10.1021/acs.jpca.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In this work, we investigate the possibility of improving multireference-driven coupled cluster (CC) approaches with an algorithm that iteratively combines complete active space (CAS) calculations with tailored CC and externally corrected CC. This is accomplished by establishing a feedback loop between the CC and CAS parts of a calculation through a similarity transformation of the Hamiltonian with those CC amplitudes that are not encompassed by the active space. We denote this approach as the complete active space iterative coupled cluster (CASiCC) ansatz. We investigate its efficiency and accuracy in the singles and doubles approximation by studying the prototypical molecules H4, H8, H2O, and N2. Our results demonstrate that CASiCC systematically improves on the single-reference CCSD and the externally corrected CCSD methods across entire potential energy curves while retaining modest computational costs. However, the tailored coupled cluster method shows superior performance in the strong correlation regime, suggesting that its accuracy is based on error compensation. We find that the iterative versions of externally corrected and tailored coupled cluster methods converge to the same results.
Collapse
Affiliation(s)
- Robin Feldmann
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Maximilian Mörchen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jakub Lang
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Lesiuk
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Markus Reiher
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Huang M, Evangelista FA. Benchmark Study of Core-Ionization Energies with the Generalized Active Space-Driven Similarity Renormalization Group. J Chem Theory Comput 2024. [PMID: 39271297 PMCID: PMC11428169 DOI: 10.1021/acs.jctc.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) is a powerful experimental technique for probing the electronic structure of molecules and materials; however, interpreting XPS data requires accurate computational methods to model core-ionized states. This work proposes and benchmarks a new approach based on the generalized active space-driven similarity renormalization group (GAS-DSRG) for calculating core-ionization energies and treating correlation effects at the perturbative and nonperturbative levels. We tested the GAS-DSRG across three data sets. First, the vertical core-ionization energies of small molecules containing first-row elements are evaluated. GAS-DSRG achieves mean absolute errors below 0.3 eV, which is comparable to high-level coupled cluster methods. Next, the accuracy of GAS-DSRG is evaluated for larger organic molecules using the CORE65 data set, with the DSRG-MRPT3 level yielding a mean absolute error of only 0.34 eV for 65 core-ionization transitions. Insights are provided into the treatment of static and dynamic correlation, the importance of high-order perturbation theory, and notable differences from density functional theory in the predicted energy ordering of core-ionized states for specific molecules. Finally, vibrationally resolved XPS spectra of diatomic molecules (CO, N2, and O2) are simulated, showing excellent agreement with experimental data.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Feldmann R, Reiher M. Renormalized Internally Contracted Multireference Coupled Cluster with Perturbative Triples. J Chem Theory Comput 2024; 20:7126-7143. [PMID: 39158160 PMCID: PMC11360144 DOI: 10.1021/acs.jctc.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
In this work, we combine the many-body formulation of the internally contracted multireference coupled cluster (ic-MRCC) method with Evangelista's multireference formulation of the driven similarity renormalization group (DSRG). The DSRG method can be viewed as a unitary multireference coupled cluster theory, which renormalizes the amplitudes based on a flow equation approach to eliminate numerical instabilities. We extend this approach by demonstrating that the unitary flow equation approach can be adapted for nonunitary transformations, rationalizing the renormalization of ic-MRCC amplitudes. We denote the new approach, the renormalized ic-MRCC (ric-MRCC) method. To achieve high accuracy with a reasonable computational cost, we introduce a new approximation to the Baker-Campbell-Hausdorff expansion. We fully consider the linear commutator while approximating the quadratic commutator, for which we neglect specific contractions involving amplitudes with active indices. Moreover, we introduce approximate perturbative triples to obtain the ric-MRCCSD[T] method. We demonstrate the accuracy of our approaches in comparison to advanced multireference methods for the potential energy curves of H8, F2, H2O, N2, and Cr2. Additionally, we show that ric-MRCCSD and ric-MRCSSD[T] match the accuracy of CCSD(T) for evaluating spectroscopic constants and of full configuration interaction energies for a set of small molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Evangelista FA, Li C, Verma P, Hannon KP, Schriber JB, Zhang T, Cai C, Wang S, He N, Stair NH, Huang M, Huang R, Misiewicz JP, Li S, Marin K, Zhao Z, Burns LA. Forte: A suite of advanced multireference quantum chemistry methods. J Chem Phys 2024; 161:062502. [PMID: 39132791 DOI: 10.1063/5.0216512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Forte is an open-source library specialized in multireference electronic structure theories for molecular systems and the rapid prototyping of new methods. This paper gives an overview of the capabilities of Forte, its software architecture, and examples of applications enabled by the methods it implements.
Collapse
Affiliation(s)
- Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Prakash Verma
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Kevin P Hannon
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jeffrey B Schriber
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
- Department of Chemistry and Biochemistry, Iona University, New Rochelle, New York 10801, USA
| | - Tianyuan Zhang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chenxi Cai
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Shuhe Wang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Nicholas H Stair
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Renke Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jonathon P Misiewicz
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Shuhang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Kevin Marin
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Zijun Zhao
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
6
|
Li C, Mao S, Huang R, Evangelista FA. Frozen Natural Orbitals for the State-Averaged Driven Similarity Renormalization Group. J Chem Theory Comput 2024; 20:4170-4181. [PMID: 38747709 DOI: 10.1021/acs.jctc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We present a reduced-cost implementation of the state-averaged driven similarity renormalization group (SA-DSRG) based on the frozen natural orbital (FNO) approach. The natural orbitals (NOs) are obtained by diagonalizing the one-body reduced density matrix from SA-DSRG second-order perturbation theory (SA-DSRG-PT2). We consider three criteria to truncate the virtual NOs for the subsequent electron correlation treatment beyond SA-DSRG-PT2. An additive second-order correction is applied to the SA-DSRG Hamiltonian to reintroduce correlation effects from the discarded orbitals. The FNO SA-DSRG method is benchmarked on 35 small organic molecules in the QUEST database. When keeping 98-99% of the cumulative occupation numbers, the mean absolute error in the vertical transition energies due to FNO is less than 0.01 eV. Using the same FNO threshold, we observe a speedup of 9 times compared to the conventional SA-DSRG implementation for nickel carbonyl with a quadruple-ζ basis set. The FNO approach enables nonperturbative SA-DSRG computations on chloroiron corrole [FeCl(C19H11N4)] with more than 1000 basis functions, surpassing the current limit of a conventional implementation.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuxian Mao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renke Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Park JW. Dynamic Correlation on the Adaptive Sampling Configuration Interaction (ASCI) Reference Function: ASCI-DSRG-MRPT2. J Chem Theory Comput 2023; 19:6263-6272. [PMID: 37611192 DOI: 10.1021/acs.jctc.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A balanced description of static and dynamic electron correlations is at the heart of quantum chemical methods. To obtain accurate results in strongly correlated systems using wave-function-based methods, a large active space is necessary to ensure correct descriptions of static correlations. Correcting the results for dynamic correlations is also necessary. In this work, we present implementations of second-order perturbation theory for dynamic correlations based on the adaptive sampling configuration interaction self-consistent field (ASCI-SCF) method. In particular, we implemented spin-free driven similarity renormalization group second-order multireference perturbation theory (DSRG-MRPT2). The extrapolation of the ASCI + PT2 energy based on the relaxed Hamiltonian in DSRG-MRPT2 gives a reasonable approximation of DSRG-MRPT2 based on CASSCF. We demonstrate the application of the ASCI-DSRG-MRPT2 method in evaluations of the spin-state energy gaps in iron porphyrins, polyacenes, and periacenes along with the reaction energies of methane oxidation by FeO+ and electrocyclic ring formation in cethrene.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
8
|
Phung QM, Nam HN, Saitow M. Unraveling the Spin-State Energetics of FeN 4 Complexes with Ab Initio Methods. J Phys Chem A 2023; 127:7544-7556. [PMID: 37651105 DOI: 10.1021/acs.jpca.3c04254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A systematic analysis was conducted to explore the spin-state energetics of a series of 19 FeN4 complexes. The performance of a large number of multireference methods was assessed, highlighting the significant challenges associated with accurately describing the spin-state energetics of FeN4 complexes. Most multireference methods were found to be susceptible to errors originating from the reference CASSCF wavefunction, leading to an overstabilization of high-spin states. Nonetheless, a few multireference methods, namely, CASPT2/CC, DSRG-MRPT3, and LDSRG(2), demonstrated promising performance compared to the benchmark CCSD(T) method. Furthermore, our study revealed that FeN4 complexes having a quintet ground state are exceedingly rare. Accordingly, only one specific model (Fe(L2)) and one synthesized complex (Fe(OTBP)) have the quintet ground state among the studied complexes. This scarcity of quintet FeN4 complexes highlights the unique nature of these systems and raises intriguing questions regarding the factors influencing spin states, such as the size of the macrocycle cavity, the introduction of substituents, or the induction of out-of-plane deformation.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Ho Ngoc Nam
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
9
|
Marie A, Loos PF. A Similarity Renormalization Group Approach to Green's Function Methods. J Chem Theory Comput 2023; 19:3943-3957. [PMID: 37311565 PMCID: PMC10339683 DOI: 10.1021/acs.jctc.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 06/15/2023]
Abstract
The family of Green's function methods based on the GW approximation has gained popularity in the electronic structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness. Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study [Monino and Loos J. Chem. Phys. 2022, 156, 231101.] has linked these convergence issues to the intruder-state problem. In this work, a perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green's function methods. The SRG formalism enables us to derive, from first-principles, the expression of a naturally static and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent GW (qsGW) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qsGW calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| |
Collapse
|
10
|
Coveney CJN, Tew DP. A Regularized Second-Order Correlation Method from Green's Function Theory. J Chem Theory Comput 2023. [PMID: 37367932 DOI: 10.1021/acs.jctc.3c00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We present a scalable single-particle framework to treat electronic correlation in molecules and materials motivated by Green's function theory. We derive a size-extensive Brillouin-Wigner perturbation theory from the single-particle Green's function by introducing the Goldstone self-energy. This new ground state correlation energy, referred to as Quasi-Particle MP2 theory (QPMP2), avoids the characteristic divergences present in both second-order Møller-Plesset perturbation theory and Coupled Cluster Singles and Doubles within the strongly correlated regime. We show that the exact ground state energy and properties of the Hubbard dimer are reproduced by QPMP2 and demonstrate the advantages of the approach for larger Hubbard models where the metal-to-insulator transition is qualitatively reproduced, contrasting with the complete failure of traditional methods. We apply this formalism to characteristic strongly correlated molecular systems and show that QPMP2 provides an efficient, size-consistent regularization of MP2.
Collapse
Affiliation(s)
| | - David P Tew
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
11
|
Marin K, Huang M, Evangelista FA. Signatures of diradicals in x-ray absorption spectroscopy. J Chem Phys 2023; 158:2882842. [PMID: 37094006 DOI: 10.1063/5.0140761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
Theoretical simulations are critical to analyze and interpret the x-ray absorption spectrum of transient open-shell species. In this work, we propose a model of the many-body core-excited states of symmetric diradicals. We apply this model to analyze the carbon K-edge transitions of o-, m-, and p-benzyne, three organic diradicals with diverse and unusual electronic structures. The predictions of our model are compared with high-level multireference computations of the K-edge spectrum of the benzynes obtained with the driven similarity renormalization group truncated to third order. Our model shows the importance of a many-body treatment of the core-excited states of the benzynes and provides a theoretical framework to understand which properties of the ground state of these diradicals can be extracted from their x-ray spectrum.
Collapse
Affiliation(s)
- Kevin Marin
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Huang M, Evangelista FA. A study of core-excited states of organic molecules computed with the generalized active space driven similarity renormalization group. J Chem Phys 2023; 158:124112. [PMID: 37003756 DOI: 10.1063/5.0137096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
This work examines the accuracy and precision of x-ray absorption spectra computed with a multireference approach that combines generalized active space (GAS) references with the driven similarity renormalization group (DSRG). We employ the x-ray absorption benchmark of organic molecule (XABOOM) set, consisting of 116 transitions from mostly organic molecules [Fransson et al., J. Chem. Theory Comput. 17, 1618 (2021)]. Several approximations to a full-valence active space are examined and benchmarked. Absolute excitation energies and intensities computed with the GAS-DSRG truncated to second-order in perturbation theory are found to systematically underestimate experimental and reference theoretical values. Third-order perturbative corrections significantly improve the accuracy of GAS-DSRG absolute excitation energies, bringing the mean absolute deviation from experimental values down to 0.32 eV. The ozone molecule and glyoxylic acid are particularly challenging for second-order perturbation theory and are examined in detail to assess the importance of active space truncation and intruder states.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
13
|
He N, Huang M, Evangelista FA. CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. J Phys Chem A 2023; 127:1975-1987. [PMID: 36799901 PMCID: PMC9986868 DOI: 10.1021/acs.jpca.2c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We develop a multireference quantum embedding model to investigate a recent experimental observation of the isomerization of vibrationally excited CO molecules on a NaCl(100) surface [Science 2020, 367, 175-178]. To explore this mechanism, we built a reduced potential energy surface of CO interacting with NaCl(100) using a second-order multireference perturbation theory, modeling the adsorbate-surface interaction with our previously developed active space embedding theory (ASET). We considered an isolated CO molecule on NaCl(100) and a high-coverage CO monolayer (1/1), and for both we generated potential energy surfaces parametrized by the CO stretching, adsorption, and inversion coordinates. These surfaces are used to determine stationary points and adsorption energies and to perform a vibrational analysis of the states relevant to the inversion mechanism. We found that for near-equilibrium bond lengths, CO adsorbed in the C-down configuration is lower in energy than in the O-down configuration. Stretching of the C-O bond reverses the energetic order of these configurations, supporting the accepted isomerization mechanism. The vibrational constants obtained from these potential energy surfaces show a small (< 10 cm-1) blue- and red-shift for the C-down and O-down configurations, respectively, in agreement with experimental assignments and previous theoretical studies. Our vibrational analysis of the monolayer case suggests that the O-down configuration is energetically more stable than the C-down one beyond the 16th vibrational excited state of CO, a value slightly smaller than the one from quasi-classical trajectory simulations (22nd) and consistent with the experiment. Our analysis suggests that CO-CO interactions in the monolayer play an important role in stabilizing highly vibrationally excited states in the O-down configuration and reducing the barrier between the C-down and O-down geometries, therefore playing a crucial role in the inversion mechanism.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Wang M, Fang WH, Li C. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases. J Chem Theory Comput 2023; 19:122-136. [PMID: 36534617 DOI: 10.1021/acs.jctc.2c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a comprehensive excited-state benchmark for the state-averaged (SA) driven similarity renormalization group (DSRG) [Li, C.; Evangelista, F. A. J. Chem. Phys. 2018, 148, 124106]. Following the QUEST database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; Loos, P.-F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1517], 280 vertical transition energies of 35 medium-sized molecules are computed using the SA-DSRG derived second- and third-order perturbation theories (PT2/PT3) along with a nonperturbative approach [sq-LDSRG(2)]. Comparing to the theoretical best estimates, the optimal flow parameter is found to be 0.35 and 2.0 Eh-2 for SA-DSRG-PT2 and SA-DSRG-PT3, respectively. For SA-sq-LDSRG(2), a flow parameter of 1.5 Eh-2 provides converged equations without compromising the accuracy. We then assess the accuracy of the SA-DSRG hierarchy using these parameters. The SA-DSRG-PT2 scheme outperforms the level-shifted CASPT2 by 0.10 eV in mean absolute error (MAE), yet this accuracy is slightly inferior than that of CASPT2 with the ionization-potential-electron-affinity shift. Both SA-DSRG-PT3 and SA-sq-LDSRG(2) yield a MAE of 0.10 eV, which is comparable to that of CASPT3 (0.09 eV). Finally, we compute vertical excitation energies of several low-lying singlet states of nucleobases. The SA-sq-LDSRG(2) approach provides highly accurate results for π → π* excitations, while n → π* transitions are better described by SA-DSRG-PT3.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Lee J, Pham HQ, Reichman DR. Twenty Years of Auxiliary-Field Quantum Monte Carlo in Quantum Chemistry: An Overview and Assessment on Main Group Chemistry and Bond-Breaking. J Chem Theory Comput 2022; 18:7024-7042. [PMID: 36255074 DOI: 10.1021/acs.jctc.2c00802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we present an overview of the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) approach from a computational quantum chemistry perspective and present a numerical assessment of its performance on main group chemistry and bond-breaking problems with a total of 1004 relative energies. While our benchmark study is somewhat limited, we make recommendations for the use of ph-AFQMC for general main-group chemistry applications. For systems where single determinant wave functions are qualitatively accurate, we expect the accuracy of ph-AFQMC in conjunction with a single-determinant trial wave function to be between that of coupled-cluster with singles and doubles (CCSD) and CCSD with perturbative triples (CCSD(T)). For these applications, ph-AFQMC should be a method of choice when canonical CCSD(T) is too expensive to run. For systems where multireference (MR) wave functions are needed for qualitative accuracy, ph-AFQMC is far more accurate than MR perturbation theory methods and competitive with MR configuration interaction (MRCI) methods. Due to the computational efficiency of ph-AFQMC compared to MRCI, we recommended ph-AFQMC as a method of choice for handling dynamic correlation in MR problems. We conclude with a discussion of important directions for future development of the ph-AFQMC approach.
Collapse
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Hung Q Pham
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
16
|
Liu J, Li Z, Yang J. Reducing Circuit Depth in Adaptive Variational Quantum Algorithms via Effective Hamiltonian Theories. J Chem Theory Comput 2022; 18:4795-4805. [DOI: 10.1021/acs.jctc.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Boggio-Pasqua M, Jacquemin DM, Loos PF. Benchmarking CASPT3 Vertical Excitation Energies. J Chem Phys 2022; 157:014103. [DOI: 10.1063/5.0095887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on 280 reference vertical transition energies of various natures (singlet, triplet, valence, Rydberg, n → π∗, π → π∗, and double excitations) extracted from the QUEST database, we assess the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states. When one applies the disputable ionization- potential-electron-affinity (IPEA) shift, we show that CASPT3 provides a similar accuracy as its second-order counterpart, CASPT2, with the same mean absolute error of 0.11 eV. However, as already reported, we also observe that the accuracy of CASPT3 is almost insensitive to the IPEA shift, irrespective of the transition type and system size, with a small reduction of the mean absolute error to 0.09 eV when the IPEA shift is switched off.
Collapse
Affiliation(s)
| | - Denis M. Jacquemin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, University of Nantes, France
| | | |
Collapse
|
18
|
Yeh SH, Yang W, Hsu CP. Reformulation of Thermally-Assisted-Occupation Density Functional Theory in the Kohn-Sham Framework. J Chem Phys 2022; 156:174108. [DOI: 10.1063/5.0087012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We reformulate the thermally-assisted-occupation density functional theory (TAO-DFT) into the Kohn-Sham single-determinant framework and construct two new post-self-consistent field (post-SCF) static correlation correction schemes, named rTAO and rTAO-1. In contrast to the original TAO-DFT with the density in an ensemble form, in which each orbital density is weighted with a fractional occupation number, the ground-state density is given by a single-determinant wavefunction, a regular Kohn-Sham density, and total ground state energy is expressed in the normal Kohn-Sham form with a static correlation energy formulated in terms of the Kohn-Sham orbitals. In post-SCF calculations with rTAO functionals, an efficient energy scanning to quantitatively determine $\theta$ is also proposed. The rTAOs provide a promising method to simulate systems with strong static correlation as original TAO, but simpler and more efficient.We show that both rTAO and rTAO-1 is capable of reproducing most results from TAO-DFT without the additional functional Eθ used in TAO-DFT. Furthermore, our numerical results support that, without the functional Eθ, both rTAO and rTAO-1 can capture correct static correlation profiles in various systems.
Collapse
Affiliation(s)
- Shu-Hao Yeh
- Institute of Chemistry Academia Sinica, Taiwan
| | - Weitao Yang
- Department of Chemistry, Duke University, United States of America
| | - Chao-Ping Hsu
- Institute of Chemistry, Institute of Chemistry Academia Sinica, Taiwan
| |
Collapse
|
19
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
20
|
Park JW. Analytical Gradient Theory for Spin-Free State-Averaged Second-Order Driven Similarity Renormalization Group Perturbation Theory (SA-DSRG-MRPT2) and Its Applications for Conical Intersection Optimizations. J Chem Theory Comput 2022; 18:2233-2245. [PMID: 35229599 DOI: 10.1021/acs.jctc.1c01150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Second-order multireference-driven similarity renormalization group perturbation theory (DSRG-MRPT2) provides an efficient means of correcting the dynamical correlation with the multiconfiguration reference function. The state-averaged DSRG-MRPT2 (SA-DSRG-MRPT2) method is the simplest means of treating the excited states with DSRG-MRPT2. In this method, the Hamiltonian dressed with dynamical correlation is diagonalized in the CASCI state subspace (SA-DSRG-MRPT2c) or the configuration subspace (SA-DSRG-MRPT2). This work develops analytical gradient theory for spin-free SA-DSRG-MRPT2(c) with the density-fitting approximation. We check the accuracy of the analytical gradients against the numerical gradients. We present applications for optimizing minimum energy conical intersections (MECI) of ethylene and retinal model chromophores (PSB3 and RPSB6). We investigate the dependence of the optimized geometries and energies on the flow parameters and reference relaxations. The smoothness of the SA-DSRG-MRPT2(c) potential energy surfaces near the reference (complete active space self-consistent field) MECI is comparable to the XMCQDPT2 one. These results render SA-DSRG-MRPT2(c) theory a promising approach for studies of conical intersections.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
21
|
Abstract
Quantum embedding schemes are a promising way to extend multireference computations to large molecules with strong correlation effects localized on a small number of atoms. This work introduces a second-order active-space embedding theory [ASET(2)] which improves upon mean-field frozen embedding by treating fragment-environment interactions via an approximate canonical transformation. The canonical transformation employed in ASET(2) is formulated using the driven similarity renormalization group. The ASET(2) scheme is benchmarked on the N═N bond dissociation in pentyldiazene, the S0 to S1 excitation in 1-octene, and the interaction energy of the O2-benzene complex. The ASET(2) explicit treatment of fragment-environment interactions beyond the mean-field level generally improves the accuracy of embedded computations, and it becomes necessary to achieve an accurate description of excitation energies of 1-octene and the singlet-triplet gap of the O2-benzene complex.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
22
|
Li J, Chen Z, Yang W. Multireference Density Functional Theory for Describing Ground and Excited States with Renormalized Singles. J Phys Chem Lett 2022; 13:894-903. [PMID: 35049309 PMCID: PMC9365454 DOI: 10.1021/acs.jpclett.1c03913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We applied renormalized singles (RS) in the multireference density functional theory (DFT) to calculate accurate energies of ground and excited states. The multireference DFT approach determines the total energy of the N-electron system as the sum of the (N - 2)-electron energy from a density functional approximation (DFA) and the two-electron addition energies from the particle-particle Tamm-Dancoff approximation (ppTDA), naturally including multireference description. The ppTDA@RS-DFA approach uses the RS Hamiltonian capturing all singles contributions in calculating two-electron addition energies, and its total energy is optimized with the optimized effective potential method. It significantly improves the original ppTDA@DFA. For ground states, ppTDA@RS-DFA properly describes dissociation curves tested and the double bond rotation of ethylene. For excited states, ppTDA@RS-DFA provides accurate excitation energies and largely eliminates the DFA dependence. ppTDA@RS-DFA thus provides an efficient multireference approach to systems with static correlation.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zehua Chen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
23
|
Huang M, Li C, Evangelista FA. Theoretical Calculation of Core-Excited States along Dissociative Pathways beyond Second-Order Perturbation Theory. J Chem Theory Comput 2021; 18:219-233. [PMID: 34964628 DOI: 10.1021/acs.jctc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We extend the multireference driven similarity renormalization (MR-DSRG) method to compute core-excited states by combining it with a GASSCF treatment of orbital relaxation and static electron correlation effects. We consider MR-DSRG treatments of dynamical correlation truncated at the level of perturbation theory (DSRG-MRPT2/3) and iterative linearized approximations with one- and two-body operators [MR-LDSRG(2)] in combination with a spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects. This approach is calibrated and tested on a series of 16 core-excited states of five closed- and open-shell diatomic molecules containing first-row elements (C, N, and O). All GASSCF-MR-DSRG theories show excellent agreement with experimental adiabatic transitions energies, with mean absolute errors ranging between 0.17 and 0.35 eV, even for the challenging partially doubly excited states of the N2+ molecule. The vibrational structure of all these transitions, obtained from using a full potential energy scan, shows a mean absolute error as low as 25 meV for DSRG-MRPT2 and 12/13 meV for DSRG-MRPT3 and MR-LDSRG(2). We generally find that a treatment of dynamical correlation that goes beyond the second-order level in perturbation theory improves the accuracy of the potential energy surface, especially in the bond-dissociation region.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
Kollmar C, Sivalingam K, Guo Y, Neese F. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J Chem Phys 2021; 155:234104. [PMID: 34937355 DOI: 10.1063/5.0072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their evaluation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration interaction solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indicate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or stability.
Collapse
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Wang S, Li C, Evangelista FA. Analytic Energy Gradients for the Driven Similarity Renormalization Group Multireference Second-Order Perturbation Theory. J Chem Theory Comput 2021; 17:7666-7681. [PMID: 34839660 DOI: 10.1021/acs.jctc.1c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We derive analytic energy gradients of the driven similarity renormalization group (DSRG) multireference second-order perturbation theory (MRPT2) using the method of Lagrange multipliers. In the Lagrangian, we impose constraints for a complete-active-space self-consistent-field reference wave function and the semicanonical orthonormal molecular orbitals. Solving for the associated Lagrange multipliers is found to share the same asymptotic scaling of a single DSRG-MRPT2 energy computation. A pilot implementation of the DSRG-MRPT2 analytic gradients is used to optimize the geometry of the singlet and triplet states of p-benzyne. The equilibrium bond lengths and angles are similar to those computed via other MRPT2s and Mukherjee's multireference coupled cluster theory. An approximate DSRG-MRPT2 method that neglects the contributions of the three-body density cumulant is found to introduce negligible errors in the geometry of p-benzyne, lending itself to a promising low-cost approach for molecular geometry optimizations using large active spaces.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Li C, Evangelista FA. Spin-free formulation of the multireference driven similarity renormalization group: A benchmark study of first-row diatomic molecules and spin-crossover energetics. J Chem Phys 2021; 155:114111. [PMID: 34551530 DOI: 10.1063/5.0059362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a spin-free formulation of the multireference (MR) driven similarity renormalization group (DSRG) based on the ensemble normal ordering of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. This ensemble averages over all microstates of a given total spin quantum number, and therefore, it is invariant with respect to SU(2) transformations. As such, all equations may be reformulated in terms of spin-free quantities and they closely resemble those of spin-adapted closed-shell coupled cluster (CC) theory. The current implementation is used to assess the accuracy of various truncated MR-DSRG methods (perturbation theory up to third order and iterative methods with single and double excitations) in computing the constants of 33 first-row diatomic molecules. The accuracy trends for these first-row diatomics are consistent with our previous benchmark on a small subset of closed-shell diatomic molecules. We then present the first MR-DSRG application on transition-metal complexes by computing the spin splittings of the [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules. A focal point analysis (FPA) shows that third-order perturbative corrections are essential to achieve reasonably converged energetics. The FPA based on the linearized MR-DSRG theory with one- and two-body operators and up to a quintuple-ζ basis set predicts the spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ to be -35.7 and -17.1 kcal mol-1, respectively, showing good agreement with the results of local CC theory with singles, doubles, and perturbative triples.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
27
|
Khokhlov D, Belov A. Toward an Accurate Ab Initio Description of Low-Lying Singlet Excited States of Polyenes. J Chem Theory Comput 2021; 17:4301-4315. [PMID: 34125516 DOI: 10.1021/acs.jctc.0c01293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The low-lying excited states of carotenoids play a crucial role in many important biophysical processes such as photosynthesis. Most of these excited states are strongly correlated, which makes them both challenging for a qualitative ab initio description and an engaging model system for trying out emerging multireference methods. Among these methods, driven similarity renormalization group (DSRG) and its perturbative version (DSRG-MRPT2) are especially attractive in terms of both accuracy and moderate numerical complexity. In this paper, we applied density matrix renormalization group (DMRG) followed by DSRG-MRPT2 for the calculation of vertical and adiabatic excitation energies into the 2Ag-, 1Bu-, and 1Bu+ electronic states of polyenes containing from 8 to 13 conjugating double bonds acting as a model for natural carotenoids. It was shown that the DSRG flow parameter should be adjusted to ensure both the energy convergence with respect to it and the agreement with the experimental data. With the increased flow parameter, the proposed combination of methods provides a reasonable agreement with the experiment. The deviations of the adiabatic excitation energies are less than 1000 cm-1 for the 2Ag- and less than 3000 cm-1 for the excited states of the Bu symmetry, which in terms of accuracy significantly outperforms the N-electron valence state perturbation theory. At the same time, DSRG-MRPT2 is shown to be robust with respect to variation of quality of the DMRG reference wave function such as the orbital optimization or the number of electronic states in the averaging.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
28
|
Chilkuri VG, Neese F. Comparison of many-particle representations for selected-CI I: A tree based approach. J Comput Chem 2021; 42:982-1005. [PMID: 33764585 DOI: 10.1002/jcc.26518] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The full configuration interaction (FCI) method is only applicable to small molecules with few electrons in moderate size basis sets. One of the main alternatives to obtain approximate FCI energies for bigger molecules and larger basis sets is selected CI. However, due to: (a) the lack of a well-defined structure in a selected CI Hamiltonian, (b) the potentially large number of electrons together with c) potentially large orbital spaces, a computationally and memory efficient algorithm is difficult to construct. In the present series of papers, we describe our attempts to address these issues by exploring tree-based approaches. At the same time, we devote special attention to the issue of obtaining eigenfunctions of the total spin squared operator since this is of particular importance in tackling magnetic properties of complex open shell systems. Dedicated algorithms are designed to tackle the CI problem in terms of determinant, configuration (CFG) and configuration state function many-particle bases by effective use of the tree representation. In this paper we describe the underlying logic of our algorithm design and discuss the advantages and disadvantages of the different many particle bases. We demonstrate by the use of small examples how the use of the tree simplifies many key algorithms required for the design of an efficient selected CI program. Our selected CI algorithm, called the iterative configuration expansion, is presented in the penultimate part. Finally, we discuss the limitations and scaling characteristics of the present approach.
Collapse
Affiliation(s)
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Misiewicz JP, Turney JM, Schaefer HF. Reduced Density Matrix Cumulants: The Combinatorics of Size-Consistency and Generalized Normal Ordering. J Chem Theory Comput 2020; 16:6150-6164. [PMID: 32866012 DOI: 10.1021/acs.jctc.0c00422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reduced density matrix cumulants play key roles in the theory of both reduced density matrices and multiconfigurational normal ordering. We present a new, simpler generating function for reduced density matrix cumulants that is formally identical with equating the coupled cluster and configuration interaction ansätze. This is shown to be a general mechanism to convert between a multiplicatively separable quantity and an additively separable quantity, as defined by a set of axioms. It is shown that both the cumulants of probability theory and the reduced density matrices are entirely combinatorial constructions, where the differences can be associated with changes in the notion of "multiplicative separability" for expectation values of random variables compared to reduced density matrices. We compare our generating function to that of previous works and criticize previous claims of probabilistic significance of the reduced density matrix cumulants. Finally, we present a simple proof of the generalized normal ordering formalism to explore the role of reduced density matrix cumulants therein. While the formalism can be used without cumulants, the combinatorial structure of expressing RDMs in terms of cumulants is the same combinatorial structure on cumulants that allows for a simple extended generalized Wick's theorem.
Collapse
Affiliation(s)
- Jonathon P Misiewicz
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, United States
| | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, United States
| |
Collapse
|
30
|
Manna S, Chaudhuri RK, Chattopadhyay S. Taming the excited states of butadiene, hexatriene, and octatetraene using state specific multireference perturbation theory with density functional theory orbitals. J Chem Phys 2020; 152:244105. [DOI: 10.1063/5.0007198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shovan Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | | | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
31
|
Li C, Evangelista FA. Connected three-body terms in single-reference unitary many-body theories: Iterative and perturbative approximations. J Chem Phys 2020; 152:234116. [PMID: 32571040 DOI: 10.1063/5.0008353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work introduces various approaches to include connected three-body terms in unitary many-body theories, focusing on the driven similarity renormalization group (DSRG). Starting from the least approximate method-the linearized DSRG truncated to one-, two-, and three-body operators [LDSRG(3)]-we develop several approximate LDSRG(3) models with reduced computational cost. Through a perturbative analysis, we motivate a family of iterative LDSRG(3)-n and -n' (n = 1, 2, 3, 4) methods that contain a subset of the LDSRG(3) diagrams. Among these variants, the LDSRG(3)-2 scheme has the same computational complexity of coupled cluster theory with singles, doubles, and triples (CCSDT), but it outperforms CCSDT in the accuracy of the predicted correlation energies. We also propose and implement two perturbative triples corrections based on the linearized DSRG truncated to one- and two-body operators augmented with recursive semi-quadratic commutators [qDSRG(2)]. The resulting qDSRG(2)+(T) approach matches the accuracy of the "gold-standard" coupled cluster theory with singles, doubles, and perturbative triples model on the energetics of twenty-eight closed-shell atoms and small molecules.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
32
|
He N, Evangelista FA. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J Chem Phys 2020; 152:094107. [PMID: 33480706 DOI: 10.1063/1.5142481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multireference computations of large-scale chemical systems are typically limited by the computational cost of quantum chemistry methods. In this work, we develop a zeroth-order active space embedding theory [ASET(0)], a simple and automatic approach for embedding any multireference dynamical correlation method based on a frozen-orbital treatment of the environment. ASET(0) is combined with the second-order multireference driven similarity renormalization group and tested on several benchmark problems, including the excitation energy of 1-octene and bond-breaking in ethane and pentyldiazene. Finally, we apply ASET(0) to study the singlet-triplet gap of p-benzyne and 9,10-anthracyne diradicals adsorbed on a NaCl surface. Our results show that despite its simplicity, ASET(0) is a powerful and sufficiently accurate embedding scheme applicable when the coupling between the fragment and the environment is in the weak to medium regime.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
33
|
Chattopadhyay S. Investigation of Multiple-Bond Dissociation Using Brillouin–Wigner Perturbation with Improved Virtual Orbitals. J Phys Chem A 2020; 124:1444-1463. [DOI: 10.1021/acs.jpca.9b11522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
34
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
35
|
Manna S, Ray SS, Chattopadhyay S, Chaudhuri RK. A simplified account of the correlation effects to bond breaking processes: The Brillouin-Wigner perturbation theory using a multireference formulation. J Chem Phys 2019. [DOI: 10.1063/1.5097657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shovan Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Suvonil Sinha Ray
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | | |
Collapse
|
36
|
Zhang T, Li C, Evangelista FA. Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Transformation, Density Fitting, and the Noninteracting Virtual Orbital Approximation. J Chem Theory Comput 2019; 15:4399-4414. [PMID: 31268704 DOI: 10.1021/acs.jctc.9b00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examines several techniques to improve the efficiency of the linearized multireference driven similarity renormalization group truncated to one- and two-body operators [MR-LDSRG(2)]. We propose a sequential MR-LDSRG(2) [sq-MR-LDSRG(2)] scheme, in which one-body substitutions are folded exactly into the Hamiltonian. This new approach is combined with density fitting (DF) to reduce the storage cost of two-electron integrals. To further avoid storage of large four-index intermediates, we propose a noninteracting virtual orbital (NIVO) approximation of the Baker-Campbell-Hausdorff series that neglects commutators terms with three and four virtual indices. The NIVO approximation reduces the computational prefactor of the MR-LDSRG(2), bringing it closer to that of coupled cluster with singles and doubles (CCSD). We test the effect of the DF and NIVO approximations on the MR-LDSRG(2) and sq-MR-LDSRG(2) methods by computing properties of eight diatomic molecules. The diatomic constants obtained by DF-sq-MR-LDSRG(2)+NIVO are found to be as accurate as those from the original MR-LDSRG(2) and coupled cluster theory with singles, doubles, and perturbative triples. Finally, we demonstrate that the DF-sq-MR-LDSRG(2)+NIVO scheme can be applied to chemical systems with more than 550 basis functions by computing the automerization energy of cyclobutadiene with a quintuple-ζ basis set. The predicted automerization energy is found to be similar to the value computed with Mukherjee's state-specific multireference coupled cluster theory with singles and doubles.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
37
|
Wang S, Li C, Evangelista FA. Analytic gradients for the single-reference driven similarity renormalization group second-order perturbation theory. J Chem Phys 2019; 151:044118. [PMID: 31370522 DOI: 10.1063/1.5100175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We derive and implement analytic energy gradients for the single-reference driven similarity renormalization group second-order perturbation theory (DSRG-PT2). The resulting equations possess an asymptotic scaling that is identical to that of the second-order Møller-Plesset perturbation theory (MP2), indicating that the exponential regularizer in the DSRG equations does not introduce formal difficulties in the gradient theory. We apply the DSRG-PT2 method to optimizing the geometries of 15 small molecules. The equilibrium bond lengths computed with DSRG-PT2 are found similar to those of MP2, yielding a mean absolute error of 0.0033 Å and a standard deviation of 0.0045 Å when compared with coupled cluster with singles, doubles, and perturbative triples.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
38
|
Li C, Lindh R, Evangelista FA. Dynamically weighted multireference perturbation theory: Combining the advantages of multi-state and state-averaged methods. J Chem Phys 2019; 150:144107. [DOI: 10.1063/1.5088120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Roland Lindh
- Department of Chemistry–BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala Center for Computational Chemistry, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
39
|
Aoto YA, Bargholz A, Kats D, Werner HJ, Köhn A. Perturbation Expansion of Internally Contracted Coupled-Cluster Theory up to Third Order. J Chem Theory Comput 2019; 15:2291-2305. [DOI: 10.1021/acs.jctc.8b01301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuri Alexandre Aoto
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Center for Mathematics Computing and Cognition, Federal University of ABC (UFABC), Avenida dos Estados 5001, Santo André, Brazil
| | - Arne Bargholz
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Daniel Kats
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
40
|
Describing strong correlation with fractional-spin correction in density functional theory. Proc Natl Acad Sci U S A 2018; 115:9678-9683. [PMID: 30201706 DOI: 10.1073/pnas.1807095115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An effective fractional-spin correction is developed to describe static/strong correlation in density functional theory. Combined with the fractional-charge correction from recently developed localized orbital scaling correction (LOSC), a functional, the fractional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction to commonly used functional approximations, introduces the explicit derivative discontinuity and largely restores the flat-plane behavior of electronic energy at fractional charges and fractional spins. In addition to improving results from conventional functionals for the prediction of ionization potentials, electron affinities, quasiparticle spectra, and reaction barrier heights, FSLOSC properly describes the dissociation of ionic species, single bonds, and multiple bonds without breaking space or spin symmetry and corrects the spurious fractional-charge dissociation of heteroatom molecules of conventional functionals. Thus, FSLOSC demonstrates success in reducing delocalization error and including strong correlation, within low-cost density functional approximation.
Collapse
|
41
|
Evangelista FA. Perspective: Multireference coupled cluster theories of dynamical electron correlation. J Chem Phys 2018; 149:030901. [DOI: 10.1063/1.5039496] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
42
|
Li C, Evangelista FA. Driven similarity renormalization group for excited states: A state-averaged perturbation theory. J Chem Phys 2018; 148:124106. [DOI: 10.1063/1.5019793] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
43
|
Li C, Evangelista FA. Erratum: “Driven similarity renormalization group: Third-order multireference perturbation theory” [J. Chem. Phys. 146, 124132 (2017)]. J Chem Phys 2018; 148:079902. [DOI: 10.1063/1.5023904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
44
|
Li C, Verma P, Hannon KP, Evangelista FA. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group. J Chem Phys 2017; 147:074107. [DOI: 10.1063/1.4997480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Prakash Verma
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Kevin P. Hannon
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|