1
|
Jain N, Thakur S. Structure and dynamics of chemically active ring polymers: swelling to collapse. SOFT MATTER 2023; 19:7358-7369. [PMID: 37740385 DOI: 10.1039/d3sm00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The ring structures are common in many synthetic or natural systems and experience both local and long-range forces by chemical sensing. This work is an effort to investigate the structural and dynamical properties of a chemically active ring in an explicit solvent bath utilizing hybrid molecular dynamics (MD) and multiparticle collision dynamics (MPCD) simulation techniques. We show that by tuning the chemical properties of the ring, it can be converted from a chemo-attractant to a chemo-repellent, thereby changing the steady state to be either collapsed or swelled as compared to its passive limit. We quantify these observations by comparing the scaling laws, local structures and the dynamics of active and passive rings. Furthermore, we show the impact of varying numbers of active sites by calculating the contact probability of the collapse state that highlights diverse structures. We also analyze the dynamics of the ring by finding the relaxation time and the mean square displacement of the centre of mass. A faster relaxation with enhanced diffusion is observed for the active rings.
Collapse
Affiliation(s)
- Namita Jain
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| |
Collapse
|
2
|
Yan R, Tan F, Wang J, Zhao N. Conformation and dynamics of an active filament in crowded media. J Chem Phys 2023; 158:114905. [PMID: 36948796 DOI: 10.1063/5.0142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The structural and dynamical properties of active filamentous objects under macromolecular crowding have a great relevance in biology. By means of Brownian dynamics simulations, we perform a comparative study for the conformational change and diffusion dynamics of an active chain in pure solvents and in crowded media. Our result shows a robust compaction-to-swelling conformational change with the augment of the Péclet number. The presence of crowding facilitates self-trapping of monomers and, thus, reinforces the activity mediated compaction. In addition, the efficient collisions between the self-propelled monomers and crowders induce a coil-to-globulelike transition, indicated by a marked change of the Flory scaling exponent of the gyration radius. Moreover, the diffusion dynamics of the active chain in crowded solutions demonstrates activity-enhanced subdiffusion. The center of mass diffusion manifests rather new scaling relations with respect to both the chain length and Péclet number. The interplay of chain activity and medium crowding provides a new mechanism to understand the non-trivial properties of active filaments in complex environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jingli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Affiliation(s)
- Namita Jain
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
4
|
Paul S, Majumder S, Das SK, Janke W. Effects of alignment activity on the collapse kinetics of a flexible polymer. SOFT MATTER 2022; 18:1978-1990. [PMID: 35023525 DOI: 10.1039/d1sm01055g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamics of various biological filaments can be understood within the framework of active polymer models. Here we consider a bead-spring model for a flexible polymer chain in which the active interaction among the beads is introduced via an alignment rule adapted from the Vicsek model. Following quenching from the high-temperature coil phase to a low-temperature state point, we study the coarsening kinetics via molecular dynamics (MD) simulations using the Langevin thermostat. For the passive polymer case the low-temperature equilibrium state is a compact globule. The results from our MD simulations reveal that though the globular state is also the typical final state in the active case, the nonequilibrium pathways to arrive at such a state differ from the picture for the passive case due to the alignment interaction among the beads. We notice that deviations from the intermediate "pearl-necklace"-like arrangement, which is observed in the passive case, and the formation of more elongated dumbbell-like structures increase with increasing activity. Furthermore, it appears that while a small active force on the beads certainly makes the coarsening process much faster, there exists a nonmonotonic dependence of the collapse time on the strength of active interaction. We quantify these observations by comparing the scaling laws for the collapse time and growth of pearls with the passive case.
Collapse
Affiliation(s)
- Subhajit Paul
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
5
|
Deng J, Mao X, Brandt L. Symmetry Breaking of Tail-Clamped Filaments in Stokes Flow. PHYSICAL REVIEW LETTERS 2021; 126:124501. [PMID: 33834789 DOI: 10.1103/physrevlett.126.124501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/14/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Symmetry breaking (SB) of fluid-structure interaction problems plays an important role in our understanding of animals' locomotive and sensing behaviors. In this Letter, we study the SB of flexible filaments clamped at one end and placed in a spanwise periodic array in Stokes flow. The equilibrium state of the filament along the streamwise direction loses stability and experiences two-dimensional and then three-dimensional SBs as the spanwise distance increases, or as the filament rigidity reduces. For slightly deformed filaments, the viscous and pressure forces are commensurate, while for extremely deformed filaments the viscous force becomes dominant.
Collapse
Affiliation(s)
- Jian Deng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xuerui Mao
- Faculty of Engineering, the University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Luca Brandt
- Swedish e-Science Research Centre and Linné FLOW Centre, Department of Engineering Mechanics, KTH, SE-100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Anand SK, Chelakkot R, Singh SP. Beating to rotational transition of a clamped active ribbon-like filament. SOFT MATTER 2019; 15:7926-7933. [PMID: 31538995 DOI: 10.1039/c9sm01386e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a detailed study of a clamped ribbon-like filament under a compressive active force using Brownian dynamics simulations. We show that a clamped ribbon-like filament is able to capture beating as well as rotational motion under the compressive force. The nature of oscillation is governed by the torsional rigidity of the filament. The frequency of oscillation is almost independent of the torsional rigidity. The beating of the filament gives a butterfly-shaped trajectory of the free-end monomer, whereas rotational motion yields a circular trajectory on a plane. The binormal correlation and the principal component analysis reveal the butterfly, elliptical, and circular trajectories of the free end monomer. We present a phase diagram for different kinds of motion in the parameter regime of compressive force and torsional rigidity.
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | | | | |
Collapse
|
7
|
Man Y, Kanso E. Morphological transitions of axially-driven microfilaments. SOFT MATTER 2019; 15:5163-5173. [PMID: 31215548 DOI: 10.1039/c8sm02397b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interactions of microtubules with motor proteins are ubiquitous in cellular and sub-cellular processes that involve motility and cargo transport. In vitro motility assays have demonstrated that motor-driven microtubules exhibit rich dynamical behaviors from straight to curved configurations. Here, we theoretically investigate the dynamic instabilities of elastic filaments, with free-ends, driven by single follower forces that emulate the action of molecular motors. Using the resistive force theory at low Reynolds number, and a combination of numerical techniques with linear stability analysis, we show the existence of four distinct regimes of filament behavior, including a novel buckled state with locked curvature. These successive instabilities recapitulate the full range of experimentally-observed microtubule behavior, implying that neither structural nor actuation asymmetry are needed to elicit this rich repertoire of motion.
Collapse
Affiliation(s)
- Yi Man
- Department of Aerospace and Mechanical engineering, University of Southern California, CA 90007, USA.
| | | |
Collapse
|
8
|
Gupta N, Chaudhuri A, Chaudhuri D. Morphological and dynamical properties of semiflexible filaments driven by molecular motors. Phys Rev E 2019; 99:042405. [PMID: 31108695 DOI: 10.1103/physreve.99.042405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 06/09/2023]
Abstract
We consider an explicit model of a semiflexible filament moving in two dimensions on a gliding assay of motor proteins, which attach to and detach from filament segments stochastically, with a detachment rate that depends on the local load experienced. Attached motor proteins move along the filament to one of its ends with a velocity that varies nonlinearly with the motor protein extension. The resultant force on the filament drives it out of equilibrium. The distance from equilibrium is reflected in the end-to-end distribution, modified bending stiffness, and a transition to spiral morphology of the polymer. The local stress dependence of activity results in correlated fluctuations in the speed and direction of the center of mass leading to a series of ballistic-diffusive crossovers in its dynamics.
Collapse
Affiliation(s)
- Nisha Gupta
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar - 140306, Punjab, India
| | - Abhishek Chaudhuri
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar - 140306, Punjab, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhaba National Institute, Anushaktigar, Mumbai 400094, India
| |
Collapse
|
9
|
Wang C, Guo YK, Tian WD, Chen K. Shape transformation and manipulation of a vesicle by active particles. J Chem Phys 2019; 150:044907. [DOI: 10.1063/1.5078694] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chao Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Yong-kun Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
10
|
Mallick A, Roy S. Visible light driven catalytic gold decorated soft-oxometalate (SOM) based nanomotors for organic pollutant remediation. NANOSCALE 2018; 10:12713-12722. [PMID: 29946590 DOI: 10.1039/c8nr03534b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Visible light propelled nanomotors are a class of highly sought after active matter. Here we report a gold decorated semiconductor and a soft-oxometalate based TiO2-{Mo7}-Au nanomotor which can be propelled diffusiophoretically on exposure to visible light and show excellent photocatalytic activity. These systems exclude the use of any harsh toxic chemical as fuel and exhibit a speed of 10 μm s-1 in water. Their motion can also be controlled by rapid switching of light. We use these photocatalytic nanomotors for environmental cleansing as they can facilitate the removal of organic pollutants from water under visible light. In this work we have demonstrated the removal of two model organic pollutants methylene blue and benzyl bromide from water using these nanomotors.
Collapse
Affiliation(s)
- Apabrita Mallick
- EFAML, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, P. R. China.
| | | |
Collapse
|
11
|
Yang QS, Fan QW, Shen ZL, Xia YQ, Tian WD, Chen K. Beating of grafted chains induced by active Brownian particles. J Chem Phys 2018; 148:214904. [PMID: 29884058 DOI: 10.1063/1.5029967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.
Collapse
Affiliation(s)
- Qiu-Song Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Qing-Wei Fan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Zhuang-Lin Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Yi-Qi Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| |
Collapse
|