1
|
Malme JT, Weaver JN, Girolami GS, Vura-Weis J. Picosecond Metal-to-Ligand Charge-Transfer Deactivation in Co(ppy) 3 via Jahn-Teller Distortion. Inorg Chem 2024; 63:13825-13830. [PMID: 39023554 DOI: 10.1021/acs.inorgchem.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The excited-state dynamics of fac-Co(ppy)3, where ppy = 2-[2-(pyridyl)phenyl], are measured with femtosecond UV-vis transient absorption spectroscopy. The initial state is confirmed with spectroelectrochemistry to have significant metal-to-ligand charge transfer (MLCT) character, unlike other Co complexes that generally have ligand-to-metal charge transfer or ligand-field transitions in this energy range. Ground-state recovery occurs in 8.65 ps in dichloromethane. Density functional theory calculations show that the MLCT state undergoes Jahn-Teller distortion and converts to a five-coordinate triplet metal-centered state in which one Co-N bond is broken. The results highlight a potential pitfall of heteroleptic bidentate ligands when designing strong-field ligands for transition-metal chromophores.
Collapse
Affiliation(s)
- Justin T Malme
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Jenelle N Weaver
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Gregory S Girolami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
2
|
Barhoumi M, Liu J, Lefkidis G, Hübner W. Ultrafast control of laser-induced spin-dynamics scenarios on two-dimensional Ni3@C63H54 magnetic system. J Chem Phys 2023; 159:084304. [PMID: 37638625 DOI: 10.1063/5.0158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
The concept of building logically functional networks employing spintronics or magnetic heterostructures is becoming more and more popular today. Incorporating logical segments into a circuit needs physical bonds between the magnetic molecules or clusters involved. In this framework, we systematically study ultrafast laser-induced spin-manipulation scenarios on a closed system of three carbon chains to which three Ni atoms are attached. After the inclusion of spin-orbit coupling and an external magnetic field, different ultrafast spin dynamics scenarios involving spin-flip and long-distance spin-transfer processes are achieved by various appropriately well-tailored time-resolved laser pulses within subpicosecond timescales. We additionally study the various effects of an external magnetic field on spin-flip and spin-transfer processes. Moreover, we obtain spin-dynamics processes induced by a double laser pulse, rather than a single one. We suggest enhancing the spatial addressability of spin-flip and spin-transfer processes. The findings presented in this article will improve our knowledge of the magnetic properties of carbon-based magnetic molecular structures. They also support the relevant experimental realization of spin dynamics and their potential applications in future molecular spintronics devices.
Collapse
Affiliation(s)
- Mohamed Barhoumi
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - Jing Liu
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | - Georgios Lefkidis
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - Wolfgang Hübner
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany
| |
Collapse
|
3
|
Schmid L, Chábera P, Rüter I, Prescimone A, Meyer F, Yartsev A, Persson P, Wenger OS. Borylation in the Second Coordination Sphere of Fe II Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics. Inorg Chem 2022; 61:15853-15863. [PMID: 36167335 PMCID: PMC9554916 DOI: 10.1021/acs.inorgchem.2c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Second coordination sphere interactions
of cyanido complexes with hydrogen-bonding solvents and Lewis acids
are known to influence their electronic structures, whereby the non-labile
attachment of B(C6F5)3 resulted in
several particularly interesting new compounds lately. Here, we investigate
the effects of borylation on the properties of two FeII cyanido complexes in a systematic manner by comparing five different
compounds and using a range of experimental techniques. Electrochemical
measurements indicate that borylation entails a stabilization of the
FeII-based t2g-like orbitals by up to 1.65 eV,
and this finding was confirmed by Mössbauer spectroscopy. This
change in the electronic structure has a profound impact on the UV–vis
absorption properties of the borylated complexes compared to the non-borylated
ones, shifting their metal-to-ligand charge transfer (MLCT) absorption
bands over a wide range. Ultrafast UV–vis transient absorption
spectroscopy provides insight into how borylation affects the excited-state
dynamics. The lowest metal-centered (MC) excited states become shorter-lived
in the borylated complexes compared to their cyanido analogues by
a factor of ∼10, possibly due to changes in outer-sphere reorganization
energies associated with their decay to the electronic ground state
as a result of B(C6F5)3 attachment
at the cyanido N lone pair. Borylation
in the second coordination sphere of two well-known
FeII cyanido complexes leads to isocyanoborato complexes.
The effects of borylation on their electronic structure and photophysical
properties are thoroughly investigated with a range of experimental
techniques.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Pavel Chábera
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100 Lund, Sweden
| | - Isabelle Rüter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Arkady Yartsev
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100 Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Dynamics of Spin Crossover Molecular Complexes. NANOMATERIALS 2022; 12:nano12101742. [PMID: 35630963 PMCID: PMC9144206 DOI: 10.3390/nano12101742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Collapse
|
5
|
Kim Y, Ma R, Lee J, Harich J, Nam D, Kim S, Kim M, Ochmann M, Eom I, Huse N, Lee JH, Kim TK. Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:12165-12172. [PMID: 34914396 DOI: 10.1021/acs.jpclett.1c02400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Junho Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | | | | | - Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Ahoulou S, Vilà N, Pillet S, Carteret C, Schaniel D, Walcarius A. Multi-stimuli Photo and Redox-active Nanostructured Mesoporous Silica Films on Transparent Electrodes. Chemphyschem 2021; 22:2464-2477. [PMID: 34708493 DOI: 10.1002/cphc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Silica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4'-methyl-2,2'-bypiridine, bpy') inside the nanochannels. Further derivatization of the bpy'-functionalized silica thin films is then achieved via a subsequent in-situ complexation step to generate [Fe(bpy)2 (bpy')]2+ inside the mesopore channels. After giving spectroscopic evidences for the presence of such complexes in the functionalized film, electrochemistry is used to transform the confined diamagnetic (S=0) F e L S b p y 2 b p y ' 2 + species to paramagnetic (S=1/2) oxidized F e L S b p y 2 b p y ' 3 + species in a reversible way, while blue light irradiation (λ=470 nm) enables populating the short-lived paramagnetic (S=2) F e H S b p y 2 b p y ' 2 + excited state. [Fe(bpy)2 (bpy')]2+ -functionalized ordered films are therefore both electro- and photo-active through the manipulation of the oxidation state and spin state of the confined complexes, paving the way for their integration in optoelectronic devices.
Collapse
Affiliation(s)
- Samuel Ahoulou
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France.,Université de Lorraine, CRM2 UMR 7036, 54000, Nancy, France
| | - Neus Vilà
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Cédric Carteret
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Alain Walcarius
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| |
Collapse
|
7
|
Wegeberg C, Häussinger D, Wenger OS. Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d 6 Metal Complexes. J Am Chem Soc 2021; 143:15800-15811. [PMID: 34516734 DOI: 10.1021/jacs.1c07345] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a long-standing interest in iron(II) complexes that emit from metal-to-ligand charge transfer (MLCT) excited states, analogous to ruthenium(II) polypyridines. The 3d6 electrons of iron(II) are exposed to a relatively weak ligand field, rendering nonradiative relaxation of MLCT states via metal-centered excited states undesirably efficient. For isoelectronic chromium(0), chelating diisocyanide ligands recently provided access to very weak MLCT emission in solution at room temperature. Here, we present a concept that boosts the luminescence quantum yield of a chromium(0) isocyanide complex by nearly 2 orders of magnitude, accompanied by a significant increase of the MLCT lifetime. Pyrene units in the diisocyanide ligand backbone lead to an enlarged π-conjugation system and to a strongly delocalized MLCT state, from which nonradiative relaxation is less dominant despite a sizable redshift of the emission. While the pyrene moiety is electronically coupled to the core of the chromium(0) complex in the excited state, UV-vis absorption and 2D NMR spectroscopy show that this is not the case in the ground state. Luminescence lifetimes and quantum yields for our pyrenyl-decorated chromium(0) complex exhibit an unusual bell-shaped dependence on solvent polarity, indicative of two counteracting effects governing the MLCT deactivation. These two effects are identified as predominant deactivation either through an energetically nearby lying metal-centered state in the most apolar solvents, or alternatively via direct nonradiative relaxation to the ground state following the energy gap law in more polar solvents. This is the first example of a 3d6 MLCT emitter to benefit from an increased π-conjugation network.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
9
|
Schmid L, Kerzig C, Prescimone A, Wenger OS. Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis. JACS AU 2021; 1:819-832. [PMID: 34467335 PMCID: PMC8395604 DOI: 10.1021/jacsau.1c00137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 05/28/2023]
Abstract
Ruthenium(II) polypyridine complexes are among the most popular sensitizers in photocatalysis, but they face some severe limitations concerning accessible excited-state energies and photostability that could hamper future applications. In this study, the borylation of heteroleptic ruthenium(II) cyanide complexes with α-diimine ancillary ligands is identified as a useful concept to elevate the energies of photoactive metal-to-ligand charge-transfer (MLCT) states and to obtain unusually photorobust compounds suitable for thermodynamically challenging energy transfer catalysis as well as oxidative and reductive photoredox catalysis. B(C6F5)3 groups attached to the CN - ligands stabilize the metal-based t2g-like orbitals by ∼0.8 eV, leading to high 3MLCT energies (up to 2.50 eV) that are more typical for cyclometalated iridium(III) complexes. Through variation of their α-diimine ligands, nonradiative excited-state relaxation pathways involving higher-lying metal-centered states can be controlled, and their luminescence quantum yields and MLCT lifetimes can be optimized. These combined properties make the respective isocyanoborato complexes amenable to photochemical reactions for which common ruthenium(II)-based sensitizers are unsuited, due to a lack of sufficient triplet energy or excited-state redox power. Specifically, this includes photoisomerization reactions, sensitization of nickel-catalyzed cross-couplings, pinacol couplings, and oxidative decarboxylative C-C couplings. Our work is relevant in the greater context of tailoring photoactive coordination compounds to current challenges in synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Lucius Schmid
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Vittardi SB, Magar RT, Schrage BR, Ziegler CJ, Jakubikova E, Rack JJ. Evidence for a lowest energy 3MLCT excited state in [Fe(tpy)(CN) 3] . Chem Commun (Camb) 2021; 57:4658-4661. [PMID: 33977987 DOI: 10.1039/d1cc01090e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transient absorption data of [FeII(tpy)(CN)3]- reveals spectroscopic signatures indicative of 3MLCT with a ∼10 ps kinetic component. These data are supported by DFT and TD-DFT calculations, which show that excited state ordering is responsive to the number of cyanide ligands on the complex.
Collapse
Affiliation(s)
- Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Briana R Schrage
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Elena Jakubikova
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, OH, USA.
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
12
|
Farcaş AA, Bende A. Theoretical modeling of the singlet-triplet spin transition in different Ni(II)-diketo-pyrphyrin-based metal-ligand octahedral complexes. Phys Chem Chem Phys 2021; 23:4784-4795. [PMID: 33599640 DOI: 10.1039/d0cp05366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural stability, charge transfer effects and strength of the spin-orbit couplings in different Ni(ii)-ligand complexes have been studied at the DFT (B3LYP and CAM-B3LYP) and coupled cluster (DLPNO-CCSD(T)) levels of theory. Accordingly, two different, porphyrin- and diketo-pyrphyrin-based four-coordination macrocycles as planar ligands as well as pyridine (or pyrrole) and mesylate anion molecular groups as vertical ligands were considered in order to build metal-organic complexes with octahedral coordination configurations. For each molecular system, the identification of equilibrium geometries and the intersystem crossing (the minimum energy crossing) points between the potential energy surfaces of the singlet and triplet spin states is followed by computing the spin-orbit couplings between the two spin states. Structures, based on the diketo-pyrphyrin macrocycle as the planar ligand, show stronger six-coordination metal-organic complexes due to the extra electrostatic interaction between the positively charged central metal cation and the negatively charged vertical ligands. The results also show that the magnitude of the spin-orbit coupling is influenced by the atomic positions of deprotonations of the ligands, and implicitly the direction of the charge transfer between the ligand and the central metal ion.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- Faculty of Physics, "Babeş-Bolyai" University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania
| | - Attila Bende
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Chábera P, Lindh L, Rosemann NW, Prakash O, Uhlig J, Yartsev A, Wärnmark K, Sundström V, Persson P. Photofunctionality of iron(III) N-heterocyclic carbenes and related d transition metal complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Diez-Cabanes V, Prampolini G, Francés-Monerris A, Monari A, Pastore M. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex. Molecules 2020; 25:molecules25133084. [PMID: 32640764 PMCID: PMC7411876 DOI: 10.3390/molecules25133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and transient spectroscopy of transition metal complexes in solution. Following this idea, here we focus on the comparison between general-purpose transferable force-fields (FFs), directly available from existing databases, and specific quantum mechanical derived FFs (QMD-FFs), obtained in this work through the Joyce procedure. We have chosen a recently reported FeIII complex with nanosecond excited-state lifetime as a representative case. Our molecular dynamics (MD) simulations demonstrated that the QMD-FF nicely reproduces the structure and the dynamics of the complex and its chemical environment within the same precision as higher cost QM methods, whereas general-purpose FFs failed in this purpose. Although in this particular case the chemical environment plays a minor role on the photo physics of this system, these results highlight the potential of QMD-FFs to rationalize photophysical phenomena provided an accurate QM method to derive its parameters is chosen.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Antonio Francés-Monerris
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
15
|
Nowak SH, Armenta R, Schwartz CP, Gallo A, Abraham B, Garcia-Esparza AT, Biasin E, Prado A, Maciel A, Zhang D, Day D, Christensen S, Kroll T, Alonso-Mori R, Nordlund D, Weng TC, Sokaras D. A versatile Johansson-type tender x-ray emission spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033101. [PMID: 32259983 DOI: 10.1063/1.5121853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/13/2020] [Indexed: 05/23/2023]
Abstract
We present a high energy resolution x-ray spectrometer for the tender x-ray regime (1.6-5.0 keV) that was designed and operated at Stanford Synchrotron Radiation Lightsource. The instrument is developed on a Rowland geometry (500 mm of radius) using cylindrically bent Johansson analyzers and a position sensitive detector. By placing the sample inside the Rowland circle, the spectrometer operates in an energy-dispersive mode with a subnatural line-width energy resolution (∼0.32 eV at 2400 eV), even when an extended incident x-ray beam is used across a wide range of diffraction angles (∼30° to 65°). The spectrometer is enclosed in a vacuum chamber, and a sample chamber with independent ambient conditions is introduced to enable a versatile and fast-access sample environment (e.g., solid/gas/liquid samples, in situ cells, and radioactive materials). The design, capabilities, and performance are presented and discussed.
Collapse
Affiliation(s)
- S H Nowak
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - R Armenta
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - C P Schwartz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A Gallo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - B Abraham
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A T Garcia-Esparza
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - E Biasin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A Prado
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A Maciel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Zhang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Day
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - S Christensen
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - T Kroll
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - R Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Nordlund
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - T-C Weng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| |
Collapse
|
16
|
Ledbetter K, Reinhard ME, Kunnus K, Gallo A, Britz A, Biasin E, Glownia JM, Nelson S, Van Driel TB, Weninger C, Zederkof DB, Haldrup K, Cordones AA, Gaffney KJ, Sokaras D, Alonso-Mori R. Excited state charge distribution and bond expansion of ferrous complexes observed with femtosecond valence-to-core x-ray emission spectroscopy. J Chem Phys 2020; 152:074203. [PMID: 32087640 DOI: 10.1063/1.5139441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Valence-to-core x-ray emission spectroscopy (VtC XES) combines the sample flexibility and element specificity of hard x-rays with the chemical environment sensitivity of valence spectroscopy. We extend this technique to study geometric and electronic structural changes induced by photoexcitation in the femtosecond time domain via laser-pump, x-ray probe experiments using an x-ray free electron laser. The results of time-resolved VtC XES on a series of ferrous complexes [Fe(CN)2n(2, 2'-bipyridine)3-n]-2n+2, n = 1, 2, 3, are presented. Comparisons of spectra obtained from ground state density functional theory calculations reveal signatures of excited state bond length and oxidation state changes. An oxidation state change associated with a metal-to-ligand charge transfer state with a lifetime of less than 100 fs is observed, as well as bond length changes associated with metal-centered excited states with lifetimes of 13 ps and 250 ps.
Collapse
Affiliation(s)
- Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Marco E Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alexander Britz
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Tim B Van Driel
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Clemens Weninger
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
17
|
Controlling the Lifetime of the Triplet MLCT State in Fe(II) Polypyridyl Complexes through Ligand Modification. INORGANICS 2020. [DOI: 10.3390/inorganics8020016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A computational study is presented in which two strategies of ligand modifications have been explored to invert the relative energy of the metal-to-ligand charge transfer (MLCT) and metal-centered (MC) state in Fe(II)-polypyridyl complexes. Replacing the bipyridines by stronger σ donors increases the ligand-field strength and pushes the MC state to higher energy, while the use of ligands with a larger π conjugation leads to lower MLCT energies.
Collapse
|
18
|
Kunnus K, Vacher M, Harlang TCB, Kjær KS, Haldrup K, Biasin E, van Driel TB, Pápai M, Chabera P, Liu Y, Tatsuno H, Timm C, Källman E, Delcey M, Hartsock RW, Reinhard ME, Koroidov S, Laursen MG, Hansen FB, Vester P, Christensen M, Sandberg L, Németh Z, Szemes DS, Bajnóczi É, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Lemke HT, Canton SE, Møller KB, Nielsen MM, Vankó G, Wärnmark K, Sundström V, Persson P, Lundberg M, Uhlig J, Gaffney KJ. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat Commun 2020; 11:634. [PMID: 32005815 PMCID: PMC6994595 DOI: 10.1038/s41467-020-14468-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
Collapse
Affiliation(s)
- Kristjan Kunnus
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Morgane Vacher
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Tobias C B Harlang
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kasper S Kjær
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Elisa Biasin
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Tim B van Driel
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Yizhu Liu
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Cornelia Timm
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Erik Källman
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Mickaël Delcey
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Robert W Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Marco E Reinhard
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Sergey Koroidov
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Mads G Laursen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Frederik B Hansen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Peter Vester
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Lise Sandberg
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
- University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Dorottya Sárosiné Szemes
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | | | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marcin Sikorski
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sophie E Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
19
|
Miller NA, Michocki LB, Konar A, Alonso-Mori R, Deb A, Glownia JM, Sofferman DL, Song S, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast XANES Monitors Femtosecond Sequential Structural Evolution in Photoexcited Coenzyme B 12. J Phys Chem B 2020; 124:199-209. [PMID: 31850761 DOI: 10.1021/acs.jpcb.9b09286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Arkaprabha Konar
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Danielle L Sofferman
- Program in Applied Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
20
|
Farcaș AA, Bende A. Improving the Light-Induced Spin Transition Efficiency in Ni(II)-Based Macrocyclic-Ligand Complexes. Molecules 2019; 24:molecules24234249. [PMID: 31766599 PMCID: PMC6930591 DOI: 10.3390/molecules24234249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023] Open
Abstract
The structural stability and photoabsorption properties of Ni(II)-based metal-organic complexes with octahedral coordination having different planar ligand ring structures were investigated employing density functional theory (DFT) and its time-dependent extension (TD-DFT) considering the M06 exchange-correlation functional and the Def2-TZVP basis set. The results showed that the molecular composition of different planar cyclic ligand structures had significant influences on the structural stability and photoabsorption properties of metal-organic complexes. Only those planar ligands that contained aromatic rings met the basic criteria (thermal stability, structural reversibility, and appropriate excitation frequency domain) for light-induced excited spin state trapping, but their spin transition efficiencies were very different. While, in all three aromatic cases, the singlet electronic excitations induced charge distribution that could help in the singlet-to-triplet spin transition, and triplet excitations, which could assist in the backward (triplet-to-singlet) spin transition, was found only for one complex.
Collapse
Affiliation(s)
- Alex-Adrian Farcaș
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania;
- Faculty of Physics, “Babeş-Bolyai” University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
21
|
Jay RM, Eckert S, Vaz da Cruz V, Fondell M, Mitzner R, Föhlisch A. Kovalenzgetriebene Erhaltung lokaler Ladungsdichten in einem durch Metall‐Ligand‐Ladungstransfer angeregten Eisenphotosensibilisator. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und AstronomieUniversität Potsdam Karl-Liebknecht-Str. 24/25 Potsdam Deutschland
| | - Sebastian Eckert
- Institut für Physik und AstronomieUniversität Potsdam Karl-Liebknecht-Str. 24/25 Potsdam Deutschland
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy Max Born Strasse 2A 12489 Berlin Deutschland
| | - Vinícius Vaz da Cruz
- Institut für Physik und AstronomieUniversität Potsdam Karl-Liebknecht-Str. 24/25 Potsdam Deutschland
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Deutschland
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Deutschland
| | - Alexander Föhlisch
- Institut für Physik und AstronomieUniversität Potsdam Karl-Liebknecht-Str. 24/25 Potsdam Deutschland
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Deutschland
| |
Collapse
|
22
|
Jay RM, Eckert S, Vaz da Cruz V, Fondell M, Mitzner R, Föhlisch A. Covalency-Driven Preservation of Local Charge Densities in a Metal-to-Ligand Charge-Transfer Excited Iron Photosensitizer. Angew Chem Int Ed Engl 2019; 58:10742-10746. [PMID: 31145507 PMCID: PMC6771958 DOI: 10.1002/anie.201904761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 11/09/2022]
Abstract
Covalency is found to even out charge separation after photo‐oxidation of the metal center in the metal‐to‐ligand charge‐transfer state of an iron photosensitizer. The σ‐donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble‐gas configuration. These findings are enabled through element‐specific and orbital‐selective time‐resolved X‐ray absorption spectroscopy at the iron L‐edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge‐separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron‐transfer process.
Collapse
Affiliation(s)
- Raphael M Jay
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, Potsdam, Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, Potsdam, Germany.,Current address: Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Strasse 2A, 12489, Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, Potsdam, Germany
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany
| | - Alexander Föhlisch
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, Potsdam, Germany.,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany
| |
Collapse
|
23
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
24
|
Abraham B, Nowak S, Weninger C, Armenta R, Defever J, Day D, Carini G, Nakahara K, Gallo A, Nelson S, Nordlund D, Kroll T, Hunter MS, van Driel T, Zhu D, Weng TC, Alonso-Mori R, Sokaras D. A high-throughput energy-dispersive tender X-ray spectrometer for shot-to-shot sulfur measurements. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:629-634. [PMID: 31074425 PMCID: PMC6510194 DOI: 10.1107/s1600577519002431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/16/2019] [Indexed: 05/23/2023]
Abstract
An X-ray emission spectrometer that can detect the sulfur Kα emission lines with large throughput and a high energy resolution is presented. The instrument is based on a large d-spacing perfect Bragg analyzer that diffracts the sulfur Kα emission at close to backscattering angles. This facilitates the application of efficient concepts routinely employed in hard X-ray spectrometers towards the tender X-ray regime. The instrument described in this work is based on an energy-dispersive von Hamos geometry that is well suited for photon-in photon-out spectroscopy at X-ray free-electron laser and synchrotron sources. Comparison of its performance with previously used instrumentation is presented through measurements using sulfur-containing species performed at the LCLS. It is shown that the overall signal intensity is increased by a factor of ∼15. Implementation of this approach in the design of a tender X-ray spectroscopy endstation for LCLS-II is also discussed.
Collapse
Affiliation(s)
- Baxter Abraham
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Stanislaw Nowak
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Clemens Weninger
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Rebecca Armenta
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jim Defever
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - David Day
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Kazutaka Nakahara
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Tim van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Tsu-Chien Weng
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
25
|
Kjær KS, Van Driel TB, Harlang TCB, Kunnus K, Biasin E, Ledbetter K, Hartsock RW, Reinhard ME, Koroidov S, Li L, Laursen MG, Hansen FB, Vester P, Christensen M, Haldrup K, Nielsen MM, Dohn AO, Pápai MI, Møller KB, Chabera P, Liu Y, Tatsuno H, Timm C, Jarenmark M, Uhlig J, Sundstöm V, Wärnmark K, Persson P, Németh Z, Szemes DS, Bajnóczi É, Vankó G, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Canton SE, Lemke HT, Gaffney KJ. Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy. Chem Sci 2019; 10:5749-5760. [PMID: 31293761 PMCID: PMC6568243 DOI: 10.1039/c8sc04023k] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/21/2019] [Indexed: 12/12/2022] Open
Abstract
Combined X-ray free-electron laser techniques pinpoints loci of intersections between potential energy surfaces of a photo-excited 3d transition-metal centered molecule.
Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2′-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.
Collapse
Affiliation(s)
- Kasper S Kjær
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ; .,Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark.,Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Tim B Van Driel
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Tobias C B Harlang
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark.,Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Kristjan Kunnus
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Elisa Biasin
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Kathryn Ledbetter
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Robert W Hartsock
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Marco E Reinhard
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Sergey Koroidov
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Lin Li
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Mads G Laursen
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Frederik B Hansen
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Peter Vester
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Morten Christensen
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Kristoffer Haldrup
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Martin M Nielsen
- Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Asmus O Dohn
- Science Institute , University of Iceland , 107 Reykjavík , Iceland
| | - Mátyás I Pápai
- Science Institute , University of Iceland , 107 Reykjavík , Iceland.,Wigner Research Centre for Physics , Hungarian Academy of Sciences , P.O. Box 49 , H-1525 Budapest , Hungary
| | - Klaus B Møller
- Science Institute , University of Iceland , 107 Reykjavík , Iceland
| | - Pavel Chabera
- Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Yizhu Liu
- Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden.,Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Cornelia Timm
- Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Martin Jarenmark
- Department of Geology , Department of Chemistry , Lund University , 223 62 Lund , Sweden
| | - Jens Uhlig
- Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Villy Sundstöm
- Department of Chemical Physics , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Petter Persson
- Theoretical Chemistry Division , Department of Chemistry , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Zoltán Németh
- Wigner Research Centre for Physics , Hungarian Academy of Sciences , P.O. Box 49 , H-1525 Budapest , Hungary
| | - Dorottya Sárosiné Szemes
- Wigner Research Centre for Physics , Hungarian Academy of Sciences , P.O. Box 49 , H-1525 Budapest , Hungary
| | - Éva Bajnóczi
- Wigner Research Centre for Physics , Hungarian Academy of Sciences , P.O. Box 49 , H-1525 Budapest , Hungary
| | - György Vankó
- Wigner Research Centre for Physics , Hungarian Academy of Sciences , P.O. Box 49 , H-1525 Budapest , Hungary
| | - Roberto Alonso-Mori
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - James M Glownia
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Silke Nelson
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Marcin Sikorski
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Dimosthenis Sokaras
- SSRL , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Sophie E Canton
- ELI-ALPS , ELI-HU Non-Profit Ltd. , Dugonics ter 13 , Szeged 6720 , Hungary.,FS-ATTO , Deutsches Elektronen-Synchrotron (DESY) , Notkestrasse 85 , D-22607 Hamburg , Germany
| | - Henrik T Lemke
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA.,SwissFEL , Paul Scherrer Institut , Villigen PSI 5232 , Switzerland
| | - Kelly J Gaffney
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ; .,SSRL , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| |
Collapse
|
26
|
Zimmer P, Burkhardt L, Schepper R, Zheng K, Gosztola D, Neuba A, Flörke U, Wölper C, Schoch R, Gawelda W, Canton SE, Bauer M. Towards Noble-Metal-Free Dyads: Ground and Excited State Tuning by a Cobalt Dimethylglyoxime Motif Connected to an Iron N-Heterocyclic Carbene Photosensitizer. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peter Zimmer
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Lukas Burkhardt
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Rahel Schepper
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Kaibo Zheng
- Department of Chemistry; Technical University of Denmark; -2800 Kongens Lyngby Denmark
- Department of Chemical Physics and NanoLund; Lund University; Box 124 22100 Lund Sweden
| | - David Gosztola
- Argonne National Laboratory; Center for Nanoscale Materials; 9700 S. Cass Avenue 60439 Lemont, Illinois United States
| | - Adam Neuba
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Ulrich Flörke
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide); University of Duisburg-Essen; Universitätsstraße 5-7 -45117 Essen Germany
| | - Roland Schoch
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4; 22869 Schenefeld Germany
- Faculty of Physics; Adam Mickiewicz University, Umultowska 85, 61-614 Poznań; Poland
| | - Sophie E. Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary & Attosecond Science Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85; Germany
| | - Matthias Bauer
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| |
Collapse
|
27
|
Kjær KS, Kaul N, Prakash O, Chábera P, Rosemann NW, Honarfar A, Gordivska O, Fredin LA, Bergquist KE, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 2018; 363:249-253. [DOI: 10.1126/science.aau7160] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/14/2018] [Indexed: 01/04/2023]
Abstract
Iron’s abundance and rich coordination chemistry are potentially appealing features for photochemical applications. However, the photoexcitable charge-transfer states of most iron complexes are limited by picosecond or subpicosecond deactivation through low-lying metal-centered states, resulting in inefficient electron-transfer reactivity and complete lack of photoluminescence. In this study, we show that octahedral coordination of iron(III) by two mono-anionic facialtris-carbene ligands can markedly suppress such deactivation. The resulting complex [Fe(phtmeimb)2]+, where phtmeimb is {phenyl[tris(3-methylimidazol-1-ylidene)]borate}−, exhibits strong, visible, room temperature photoluminescence with a 2.0-nanosecond lifetime and 2% quantum yield via spin-allowed transition from a doublet ligand-to-metal charge-transfer (2LMCT) state to the doublet ground state. Reductive and oxidative electron-transfer reactions were observed for the2LMCT state of [Fe(phtmeimb)2]+in bimolecular quenching studies with methylviologen and diphenylamine.
Collapse
|
28
|
Jay RM, Eckert S, Fondell M, Miedema PS, Norell J, Pietzsch A, Quevedo W, Niskanen J, Kunnus K, Föhlisch A. The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes. Phys Chem Chem Phys 2018; 20:27745-27751. [PMID: 30211412 PMCID: PMC6240897 DOI: 10.1039/c8cp04341h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of ligand substitution on metal-ligand covalency and the valence excited state landscape is investigated using resonant inelastic soft X-ray scattering.
Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic structure around an aqueous iron(ii) center. Exchanging cyanide with 2-2′-bipyridine ligands reshapes frontier orbitals in a way that reduces metal 3d charge delocalization onto the ligands. This net decrease of metal–ligand covalency results in lower metal-centered excited state energies in agreement with previously reported excited state dynamics. Furthermore, traces of solvent-effects were found indicating a varying interaction strength of the solvent with ligands of different character. Our results demonstrate how ligand exchange can be exploited to shape frontier orbitals of transition metal complexes in solution-phase chemistry; insights upon which future efforts can built when tailoring the functionality of photoactive systems for light-harvesting applications.
Collapse
Affiliation(s)
- Raphael M Jay
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Francés-Monerris A, Magra K, Darari M, Cebrián C, Beley M, Domenichini E, Haacke S, Pastore M, Assfeld X, Gros PC, Monari A. Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of fac/ mer Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. Inorg Chem 2018; 57:10431-10441. [PMID: 30063338 DOI: 10.1021/acs.inorgchem.8b01695] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.
Collapse
Affiliation(s)
| | - Kevin Magra
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | - Mohamed Darari
- Université de Lorraine , CNRS, L2CM , F54000 Nancy , France
| | | | - Marc Beley
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | | | - Stefan Haacke
- Université de Strasbourg-CNRS , UMR 7504 IPCMS , 67034 Strasbourg , France
| | | | - Xavier Assfeld
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| | | | - Antonio Monari
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| |
Collapse
|
30
|
|
31
|
Miller NA, Deb A, Alonso-Mori R, Glownia JM, Kiefer LM, Konar A, Michocki LB, Sikorski M, Sofferman DL, Song S, Toda MJ, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast X-ray Absorption Near Edge Structure Reveals Ballistic Excited State Structural Dynamics. J Phys Chem A 2018; 122:4963-4971. [PMID: 29799204 DOI: 10.1021/acs.jpca.8b04223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polarized ultrafast time-resolved X-ray absorption near edge structure (XANES) allows characterization of excited state dynamics following excitation. Excitation of vitamin B12, cyanocobalamin (CNCbl), in the αβ-band at 550 nm and the γ-band at 365 nm was used to uniquely resolve axial and equatorial contributions to the excited state dynamics. The structural evolution of the excited molecule is best described by a coherent ballistic trajectory on the excited state potential energy surface. Prompt expansion of the Co cavity by ca. 0.03 Å is followed by significant elongation of the axial bonds (>0.25 Å) over the first 190 fs. Subsequent contraction of the Co cavity in both axial and equatorial directions results in the relaxed S1 excited state structure within 500 fs of excitation.
Collapse
Affiliation(s)
| | | | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | | | | | | | - Marcin Sikorski
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | | | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Megan J Toda
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | | | - Diling Zhu
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | | | | | | |
Collapse
|
32
|
Kjær KS, Kunnus K, Harlang TCB, Van Driel TB, Ledbetter K, Hartsock RW, Reinhard ME, Koroidov S, Li L, Laursen MG, Biasin E, Hansen FB, Vester P, Christensen M, Haldrup K, Nielsen MM, Chabera P, Liu Y, Tatsuno H, Timm C, Uhlig J, Sundstöm V, Németh Z, Szemes DS, Bajnóczi É, Vankó G, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Lemke HT, Canton SE, Wärnmark K, Persson P, Cordones AA, Gaffney KJ. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2'-bipyridine)(CN) 4] 2. Phys Chem Chem Phys 2018; 20:4238-4249. [PMID: 29364300 DOI: 10.1039/c7cp07838b] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.
Collapse
Affiliation(s)
- Kasper S Kjær
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chábera P, Kjaer KS, Prakash O, Honarfar A, Liu Y, Fredin LA, Harlang TCB, Lidin S, Uhlig J, Sundström V, Lomoth R, Persson P, Wärnmark K. Fe II Hexa N-Heterocyclic Carbene Complex with a 528 ps Metal-to-Ligand Charge-Transfer Excited-State Lifetime. J Phys Chem Lett 2018; 9:459-463. [PMID: 29298063 DOI: 10.1021/acs.jpclett.7b02962] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The iron carbene complex [FeII(btz)3](PF6)2 (where btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)) has been synthesized, isolated, and characterized as a low-spin ferrous complex. It exhibits strong metal-to-ligand charge transfer (MLCT) absorption bands throughout the visible spectrum, and excitation of these bands gives rise to a 3MLCT state with a 528 ps excited-state lifetime in CH3CN solution that is more than one order of magnitude longer compared with the MLCT lifetime of any previously reported FeII complex. The low potential of the [Fe(btz)3]3+/[Fe(btz)3]2+ redox couple makes the 3MLCT state of [FeII(btz)3]2+ a potent photoreductant that can be generated by light absorption throughout the visible spectrum. Taken together with our recent results on the [FeIII(btz)3]3+ form of this complex, these results show that the FeII and FeIII oxidation states of the same Fe(btz)3 complex feature long-lived MLCT and LMCT states, respectively, demonstrating the versatility of iron N-heterocyclic carbene complexes as promising light-harvesters for a broad range of oxidizing and reducing conditions.
Collapse
Affiliation(s)
| | - Kasper S Kjaer
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University , Menlo Park, California 94025, United States
| | | | | | | | | | | | | | | | | | - Reiner Lomoth
- Department of Chemistry - Ångström Laboratory, Uppsala University , Box 523, SE-75120 Uppsala, Sweden
| | | | | |
Collapse
|
34
|
Leshchev D, Harlang TCB, Fredin LA, Khakhulin D, Liu Y, Biasin E, Laursen MG, Newby GE, Haldrup K, Nielsen MM, Wärnmark K, Sundström V, Persson P, Kjær KS, Wulff M. Tracking the picosecond deactivation dynamics of a photoexcited iron carbene complex by time-resolved X-ray scattering. Chem Sci 2018; 9:405-414. [PMID: 29629111 PMCID: PMC5868308 DOI: 10.1039/c7sc02815f] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Recent years have seen the development of new iron-centered N-heterocyclic carbene (NHC) complexes for solar energy applications. Compared to typical ligand systems, the NHC ligands provide Fe complexes with longer-lived metal-to-ligand charge transfer (MLCT) states. This increased lifetime is ascribed to strong ligand field splitting provided by the NHC ligands that raises the energy levels of the metal centered (MC) states and therefore reduces the deactivation efficiency of MLCT states. Among currently known NHC systems, [Fe(btbip)2]2+ (btbip = 2,6-bis(3-tert-butyl-imidazol-1-ylidene)pyridine) is a unique complex as it exhibits a short-lived MC state with a lifetime on the scale of a few hundreds of picoseconds. Hence, this complex allows for a detailed investigation, using 100 ps X-ray pulses from a synchrotron, of strong ligand field effects on the intermediate MC state in an NHC complex. Here, we use time-resolved wide angle X-ray scattering (TRWAXS) aided by density functional theory (DFT) to investigate the molecular structure, energetics and lifetime of the high-energy MC state in the Fe-NHC complex [Fe(btbip)2]2+ after excitation to the MLCT manifold. We identify it as a 260 ps metal-centered quintet (5MC) state, and we refine the molecular structure of the excited-state complex verifying the DFT results. Using information about the hydrodynamic state of the solvent, we also determine, for the first time, the energy of the 5MC state as 0.75 ± 0.15 eV. Our results demonstrate that due to the increased ligand field strength caused by NHC ligands, upon transition from the ground state to the 5MC state, the metal to ligand bonds extend by unusually large values: by 0.29 Å in the axial and 0.21 Å in the equatorial direction. These results imply that the transition in the photochemical properties from typical Fe complexes to novel NHC compounds is manifested not only in the destabilization of the MC states, but also in structural distortion of these states.
Collapse
Affiliation(s)
- Denis Leshchev
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| | - Tobias C B Harlang
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Lisa A Fredin
- Theoretical Chemistry Division , Lund University , P. O. Box 124 , 22100 Lund , Sweden
| | | | - Yizhu Liu
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P. O. Box 12 4 , Lund 22100 , Sweden
| | - Elisa Biasin
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Mads G Laursen
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Gemma E Newby
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| | - Kristoffer Haldrup
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Martin M Nielsen
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P. O. Box 12 4 , Lund 22100 , Sweden
| | - Villy Sundström
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
| | - Petter Persson
- Theoretical Chemistry Division , Lund University , P. O. Box 124 , 22100 Lund , Sweden
| | - Kasper S Kjær
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Michael Wulff
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| |
Collapse
|