1
|
Guo Y, Pernal K. Spinless formulation of linearized adiabatic connection approximation and its comparison with the second order N-electron valence state perturbation theory. Faraday Discuss 2024; 254:332-358. [PMID: 39114978 DOI: 10.1039/d4fd00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The adiabatic connection (AC) approximation, along with its linearized variant AC0, was introduced as a method of obtaining dynamic correlation energy. When using a complete active space self-consistent field (CASSCF) wave function as a reference, the AC0 approximation is considered one of the most efficient multi-reference perturbation theories. It only involves the use of 1st- and 2nd-order reduced density matrices. However, some numerical results have indicated that the excitation energies predicted by AC0 are not as reliable as those from the second-order N-electron valence state perturbation theory (NEVPT2). In this study, we develop a spinless formulation of AC0 based on the Dyall Hamiltonian and provide a detailed comparison between AC0 and NEVPT2 approaches. We demonstrate the components within the correlation energy expressions that are common to both methods and those unique to either AC0 or NEVPT2. We investigate the role of the terms exclusive to NEVPT2 and explore the possibility of enhancing AC0's performance in this regard.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland.
| |
Collapse
|
2
|
Drwal D, Pernal K, Pastorczak E. Multireference Correlated Oscillator Strengths from Adiabatic Connection Approaches Based on Extended Random Phase Approximation. J Chem Theory Comput 2024; 20:3659-3668. [PMID: 38669448 PMCID: PMC11099974 DOI: 10.1021/acs.jctc.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
We show that accurate oscillator strengths can be obtained from adiabatic connection (AC) approaches based on the extended random phase approximation (ERPA) combined with multireference (complete active space, CAS) wave functions. The oscillator strengths calculated using the perturbation-corrected ERPA transition density matrices, proposed in this work, and the excitation energies calculated with recently introduced AC correlation energy methods, AC0 and AC0D, compete with accuracy in the perturbational CASPT2 approach and require less computational effort. AC0 and AC0D methods scale more favorably with the number of active orbitals than multiconfigurational perturbation approaches like CASPT2 and NEVPT2 thanks to their dependence on reduced density matrices up to the order of 2. Importantly, the newly developed approach for computing correlated transition dipole moments does not entail any additional costs, as all intermediate quantities become available when AC0 energies are being computed. We also test the performance of the recently proposed AC method corrected for the negative-transition contributions to the correlation energy, AC0D, for triplet excitation energies. Similarly, as for the singlet excitations, the correction improves the performance of the AC0 method, particularly for the low-lying excited states.
Collapse
Affiliation(s)
- Daria Drwal
- Institute of Physics, Lodz
University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz
University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz
University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
3
|
Chaussy L, Chilkuri VG, Humbel S, Nava P. Spectroscopy of End-On Copper(II) Superoxido Complexes: A Wave Function-Based Analysis. Inorg Chem 2024; 63:8038-8049. [PMID: 38659336 DOI: 10.1021/acs.inorgchem.3c04401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Wave function methods are employed to analyze the ground and low-lying excited states of bipyramid trigonal copper(II) superoxido complexes, up to their characteristic ligand to metal charge transfer band. Several multireference methods have been combined to provide new insights into the interpretation of their experimental absorption spectra. We show that the intraligand transition on the dioxygen leads to a dark state. Among the results, we shall highlight the finding of doubly excited states in the region of the d-d transitions and the subtle interplay between Cu(I) and Cu(II) in the ground and excited states. Some of these findings could be obtained only with multireference methods.
Collapse
Affiliation(s)
- Léo Chaussy
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | | | - Stéphane Humbel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Paola Nava
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| |
Collapse
|
4
|
Cheng Y, Ma H. Renormalized-Residue-Based Multireference Configuration Interaction Method for Strongly Correlated Systems. J Chem Theory Comput 2024; 20:1988-2009. [PMID: 38380619 DOI: 10.1021/acs.jctc.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The implementation of multireference configuration interaction (MRCI) methods in quantum systems with large active spaces is hindered by the expansion of configuration bases or the intricate handling of reduced density matrices (RDMs). In this work, we present a spin-adapted renormalized-residue-based MRCI (RR-MRCI) approach that leverages renormalized residues to effectively capture the entanglement between active and inactive orbitals. This approach is reinforced by a novel efficient algorithm, which also facilitates an efficient deployment of spin-adapted matrix product state MRCI (MPS-MRCI). The RR-MRCI framework possesses several advantages: (1) It considers the orbital entanglement and utilizes highly compressed MPS structure, improving computational accuracy and efficiency compared with internally contracted (ic) MRCI. (2) Utilizing small-sized buffer environments of a few external orbitals as probes based on quantum information theory, it enhances computational efficiency over MPS-MRCI and offers potential application to large molecular systems. (3) The RR framework can be implemented in conjunction with ic-MRCI, eliminating the need for high-rank RDMs, by using distinct renormalized residues. We evaluated this method across nine diverse molecular systems, including Cu2O22+ with an active space of (24e,24o) and two complexes of lanthanide and actinide with active space (38e,36o), demonstrating the method's versatility and efficacy.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Zhai H, Larsson HR, Lee S, Cui ZH, Zhu T, Sun C, Peng L, Peng R, Liao K, Tölle J, Yang J, Li S, Chan GKL. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J Chem Phys 2023; 159:234801. [PMID: 38108484 DOI: 10.1063/5.0180424] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Linqing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junjie Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shuoxue Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
6
|
Li S, Misiewicz JP, Evangelista FA. Intruder-free cumulant-truncated driven similarity renormalization group second-order multireference perturbation theory. J Chem Phys 2023; 159:114106. [PMID: 37712785 DOI: 10.1063/5.0159403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Accurate multireference electronic structure calculations are important for constructing potential energy surfaces. Still, even in the case of low-scaling methods, their routine use is limited by the steep growth of the computational and storage costs as the active space grows. This is primarily due to the occurrence of three- and higher-body density matrices or, equivalently, their cumulants. This work examines the effect of various cumulant truncation schemes on the accuracy of the driven similarity renormalization group second-order multireference perturbation theory. We test four different levels of three-body reduced density cumulant truncations that set different classes of cumulant elements to zero. Our test cases include the singlet-triplet gap of CH2, the potential energy curves of the XΣg+1 and AΣu+3 states of N2, and the singlet-triplet splittings of oligoacenes. Our results show that both relative and absolute errors introduced by these cumulant truncations can be as small as 0.5 kcal mol-1 or less. At the same time, the amount of memory required is reduced from O(NA6) to O(NA5), where NA is the number of active orbitals. No additional regularization is needed to prevent the intruder state problem in the cumulant-truncated second-order driven similarity renormalization group multireference perturbation theory methods.
Collapse
Affiliation(s)
- Shuhang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jonathon P Misiewicz
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Schlimgen AW, Guo Y, Head-Marsden K. Characterizing Excited States of a Copper-Based Molecular Qubit Candidate with Correlated Electronic Structure Methods. J Phys Chem A 2023; 127:6764-6770. [PMID: 37531508 DOI: 10.1021/acs.jpca.3c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Molecular spins have a variety of potential advantages as qubits for quantum computation, such as tunability and well-understood design pathways through organometallic synthesis. Organometallic and heavy-metal-based molecular spin qubits can also exhibit rich electronic structures due to ligand field interactions and electron correlation. These features make consistent and reliable modeling of these species a considerable challenge for contemporary electronic structure techniques. Here, we elucidate the electronic structure of a Cu(II) complex analogous to a recently proposed room-temperature molecular spin qubit. Using active space methods to describe the electron correlation, we show the nuanced interaction between the metal d orbitals and ligand σ and π orbitals makes these systems challenging to model, both in terms of the delocalized spin density and the excited state ordering. We show that predicting the correct spin delocalization requires special consideration of the Cu d orbitals and that the excited state spectrum for the Cu(III) complex also requires the explicit inclusion of the π orbitals in the active space. These interactions are rather common in molecular spin qubit motifs and may play an important role in spin-decoherence processes. Our results may lend insight into future studies of the orbital interactions and electron delocalization of similar complexes.
Collapse
Affiliation(s)
- Anthony W Schlimgen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, United States
| | - Yangyang Guo
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, United States
| | - Kade Head-Marsden
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, United States
| |
Collapse
|
8
|
Li ZY, Horn F, Li Y, Mou LH, Schöllkopf W, Chen H, He SG, Asmis KR. Dinitrogen Activation in the Gas Phase: Spectroscopic Characterization of C-N Coupling in the V 3 C + +N 2 Reaction. Chemistry 2023; 29:e202203384. [PMID: 36511849 DOI: 10.1002/chem.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
We report on cluster-mediated C-N bond formation in the gas phase using N2 as a nitrogen source. The V3 C+ +N2 reaction is studied by a combination of ion-trap mass spectrometry with infrared photodissociation (IRPD) spectroscopy and complemented by electronic structure calculations. The proposed reaction mechanism is spectroscopically validated by identifying the structures of the reactant and product ions. V3 C+ exhibits a pyramidal structure of C1 -symmetry. N2 activation is initiated by adsorption in an end-on fashion at a vanadium site, followed by spontaneous cleavage of the N≡N triple bond and subsequent C-N coupling. The IRPD spectrum of the metal nitride product [NV3 (C=N)]+ exhibits characteristic C=N double bond (1530 cm-1 ) and V-N single bond (770, 541 and 522 cm-1 ) stretching bands.
Collapse
Affiliation(s)
- Zi-Yu Li
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Francine Horn
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yao Li
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Tammaro A, Galli DE, Rice JE, Motta M. N-Electron Valence Perturbation Theory with Reference Wave Functions from Quantum Computing: Application to the Relative Stability of Hydroxide Anion and Hydroxyl Radical. J Phys Chem A 2023; 127:817-827. [PMID: 36638358 DOI: 10.1021/acs.jpca.2c07653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quantum simulations of the hydroxide anion and hydroxyl radical are reported, employing variational quantum algorithms for near-term quantum devices. The energy of each species is calculated along the dissociation curve, to obtain information about the stability of the molecular species being investigated. It is shown that simulations restricted to valence spaces incorrectly predict the hydroxyl radical to be more stable than the hydroxide anion. Inclusion of dynamical electron correlation from nonvalence orbitals is demonstrated, through the integration of the variational quantum eigensolver and quantum subspace expansion methods in the workflow of N-electron valence perturbation theory, and shown to correctly predict the hydroxide anion to be more stable than the hydroxyl radical, provided that basis sets with diffuse orbitals are also employed. Finally, we calculate the electron affinity of the hydroxyl radical using an aug-cc-pVQZ basis on IBM's quantum devices.
Collapse
Affiliation(s)
- Alessandro Tammaro
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, I-20133Milano, Italy
| | - Davide E Galli
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, I-20133Milano, Italy
| | - Julia E Rice
- IBM Quantum, IBM Research Almaden, 650 Harry Road, San Jose, California95120, United States
| | - Mario Motta
- IBM Quantum, IBM Research Almaden, 650 Harry Road, San Jose, California95120, United States
| |
Collapse
|
10
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
11
|
Sarkar R, Loos PF, Boggio-Pasqua M, Jacquemin D. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. J Chem Theory Comput 2022; 18:2418-2436. [PMID: 35333060 DOI: 10.1021/acs.jctc.1c01197] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events but also to provide reference values for vertical transition energies, hence allowing benchmarking of lower-order models. In this category, both the complete-active-space second-order perturbation theory (CASPT2) and the N-electron valence state second-order perturbation theory (NEVPT2) are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches, the present work relies on highly accurate (±0.03 eV) aug-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 n → π*, 119 π → π*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially contracted (PC) and strongly contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.11 and 0.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focused on single-reference wave function methods ( J. Chem. Theory Comput. 2018, 14, 4360; J. Chem. Theory Comput. 2020, 16, 1711), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.
Collapse
Affiliation(s)
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
12
|
Kollmar C, Sivalingam K, Guo Y, Neese F. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J Chem Phys 2021; 155:234104. [PMID: 34937355 DOI: 10.1063/5.0072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their evaluation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration interaction solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indicate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or stability.
Collapse
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Wang S, Li C, Evangelista FA. Analytic Energy Gradients for the Driven Similarity Renormalization Group Multireference Second-Order Perturbation Theory. J Chem Theory Comput 2021; 17:7666-7681. [PMID: 34839660 DOI: 10.1021/acs.jctc.1c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We derive analytic energy gradients of the driven similarity renormalization group (DSRG) multireference second-order perturbation theory (MRPT2) using the method of Lagrange multipliers. In the Lagrangian, we impose constraints for a complete-active-space self-consistent-field reference wave function and the semicanonical orthonormal molecular orbitals. Solving for the associated Lagrange multipliers is found to share the same asymptotic scaling of a single DSRG-MRPT2 energy computation. A pilot implementation of the DSRG-MRPT2 analytic gradients is used to optimize the geometry of the singlet and triplet states of p-benzyne. The equilibrium bond lengths and angles are similar to those computed via other MRPT2s and Mukherjee's multireference coupled cluster theory. An approximate DSRG-MRPT2 method that neglects the contributions of the three-body density cumulant is found to introduce negligible errors in the geometry of p-benzyne, lending itself to a promising low-cost approach for molecular geometry optimizations using large active spaces.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Beran P, Matoušek M, Hapka M, Pernal K, Veis L. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J Chem Theory Comput 2021; 17:7575-7585. [PMID: 34762423 DOI: 10.1021/acs.jctc.1c00896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as one of the methods of choice for calculations of strongly correlated molecular systems. Despite its great ability to capture strong electronic correlation in large active spaces, it is not suitable for computations of dynamical electron correlation. In this work, we present a new approach to the electronic structure problem of strongly correlated molecules, in which DMRG is responsible for a proper description of the strong correlation, whereas dynamical correlation is computed via the recently developed adiabatic connection (AC) technique which requires only up to two-body active space reduced density matrices. We report the encouraging results of this approach on typical candidates for DMRG computations, namely, n-acenes (n = 2 → 7), Fe(II)-porphyrin, and the Fe3S4 cluster.
Collapse
Affiliation(s)
- Pavel Beran
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Mikuláš Matoušek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
15
|
Mazin IM, Sokolov AY. Multireference Algebraic Diagrammatic Construction Theory for Excited States: Extended Second-Order Implementation and Benchmark. J Chem Theory Comput 2021; 17:6152-6165. [PMID: 34553937 DOI: 10.1021/acs.jctc.1c00684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/vis spectra of strongly correlated molecular systems (MR-ADC). Following our work on the first-order MR-ADC approximation [J. Chem. Phys. 2018, 149, 204113], we report the strict and extended second-order MR-ADC methods (MR-ADC(2) and MR-ADC(2)-X) that combine the description of static and dynamic electron correlation in the ground and excited electronic states without relying on state-averaged reference wave functions. We present an extensive benchmark of the new MR-ADC methods for excited states in several small molecules, including the carbon dimer, ethylene, and butadiene. Our results demonstrate that, for weakly correlated electronic states, the MR-ADC(2) and MR-ADC(2)-X methods outperform the third-order single-reference ADC approximation and are competitive with the results from equation-of-motion coupled cluster theory. For states with multireference character, the performance of the MR-ADC methods is similar to that of an N-electron valence perturbation theory. In contrast to conventional multireference perturbation theories, the MR-ADC methods have many attractive features, such as a straightforward and efficient calculation of excited-state properties and a direct access to excitations outside of the frontier (active) orbitals.
Collapse
Affiliation(s)
- Ilia M Mazin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Park W, Shen J, Lee S, Piecuch P, Filatov M, Choi CH. Internal Conversion between Bright (1 1Bu+) and Dark (2 1Ag-) States in s- trans-Butadiene and s- trans-Hexatriene. J Phys Chem Lett 2021; 12:9720-9729. [PMID: 34590847 DOI: 10.1021/acs.jpclett.1c02707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Internal conversion (IC) between the two lowest singlet excited states, 11Bu+ and 21Ag-, of s-trans-butadiene and s-trans-hexatriene is investigated using a series of single- and multi- reference wave function and density functional theory (DFT) methodologies. Three independent types of the equation-of-motion coupled-cluster (EOMCC) theory capable of providing an accurate and balanced description of one- as well as two-electron transitions, abbreviated as δ-CR-EOMCC(2,3), DIP-EOMCC(4h2p){No}, and DEA-EOMCC(4p2h){Nu} or DEA-EOMCC(3p1h,4p2h){Nu}, consistently predict that the 11Bu+/21Ag- crossing in both molecules occurs along the bond length alternation coordinate. However, the analogous 11Bu+ and 21Ag- potentials obtained with some multireference approaches, such as CASSCF and MRCIS(D), as well as with the linear-response formulation of time-dependent DFT (TDDFT), do not cross. Hence, caution needs to be exercised when studying the low-lying singlet excited states of polyenes with conventional multiconfigurational methods and TDDFT. The multistate many-body perturbation theory methods, such as XMCQDPT2, do correctly reproduce the curve crossing. Among the simplest and least expensive computational methodologies, the DFT approaches that incorporate the contributions of doubly excited configurations, abbreviated as MRSF (mixed reference spin-flip) TDDFT and SSR(4,4), accurately reproduce our best EOMCC results. This is highly promising for nonadiabatic molecular dynamics simulations in larger systems.
Collapse
Affiliation(s)
- Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
17
|
Lee S, Zhai H, Sharma S, Umrigar CJ, Chan GKL. Externally Corrected CCSD with Renormalized Perturbative Triples (R-ecCCSD(T)) and the Density Matrix Renormalization Group and Selected Configuration Interaction External Sources. J Chem Theory Comput 2021; 17:3414-3425. [PMID: 34018739 DOI: 10.1021/acs.jctc.1c00205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the renormalized perturbative triples correction together with the externally corrected coupled-cluster singles and doubles (ecCCSD) method. We use the density matrix renormalization group (DMRG) and heat-bath CI (HCI) as external sources for the ecCCSD equations. The accuracy is assessed for the potential energy surfaces of H2O, N2, and F2. We find that the triples correction significantly improves upon ecCCSD, and we do not see any instability of the renormalized triples with respect to dissociation. We explore how to balance the cost of computing the external source amplitudes against the accuracy of the subsequent CC calculation. In this context, we find that very approximate wave functions (and their large amplitudes) serve as an efficient and accurate external source. Finally, we characterize the domain of correlation treatable using the ecCCSD and renormalized triples combination studied in this work via a well-known wave function diagnostic.
Collapse
Affiliation(s)
- Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sandeep Sharma
- Department of Chemistry, The University of Colorado at Boulder, Boulder, Colorado 80302, United States
| | - C J Umrigar
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Guo Y, Sivalingam K, Kollmar C, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. J Chem Phys 2021; 154:214113. [PMID: 34240984 DOI: 10.1063/5.0051218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Paper I, the performances of pre-screening (PS), extended PS (EPS), and cumulant (CU) approximations to the fourth-order density matrix were examined in the context of second-order N-electron valence state perturbation theory (NEVPT2). It has been found that the CU, PS, and even EPS approximations with loose thresholds may introduce intruder states. In the present work, the origin of these "false intruder" states introduced by approximated density matrices is discussed. Canonical NEVPT2 implementations employ a rank reduction trick. By analyzing its residual error, we find that the omission of the rank reduction leads to a more stable multireference perturbation theory for incomplete active space reference wave functions. Such a full rank (FR)-NEVPT2 formulation is equivalent to the conventional NEVPT2 method for the complete active space self-consistent field/complete active space configuration interaction reference wave function. A major drawback of the FR-NEVPT2 formulation is the necessity of the fifth-order density matrix. To avoid the construction of the high-order density matrices, the combination of the FR-NEVPT2 with the CU approximation is studied. However, we find that the CU approximation remains problematic as it still introduces intruder states. The question of how to robustly and efficiently perform internally contracted multireference perturbation theories with approximate densities remains a challenging field of investigation.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Guo Y, Sivalingam K, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J Chem Phys 2021; 154:214111. [PMID: 34240991 DOI: 10.1063/5.0051211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, the second-order N-electron valence state perturbation theory (NEVPT2) has developed into a widely used multireference perturbation method. To apply NEVPT2 to systems with large active spaces, the computational bottleneck is the construction of the fourth-order reduced density matrix. Both its generation and storage become quickly problematic beyond the usual maximum active space of about 15 active orbitals. To reduce the computational cost of handling fourth-order density matrices, the cumulant approximation (CU) has been proposed in several studies. A more conventional strategy to address the higher-order density matrices is the pre-screening approximation (PS), which is the default one in the ORCA program package since 2010. In the present work, the performance of the CU, PS, and extended PS (EPS) approximations for the fourth-order density matrices is compared. Following a pedagogical introduction to NEVPT2, contraction schemes, as well as the approximations to density matrices, and the intruder state problem are discussed. The CU approximation, while potentially leading to large computational savings, virtually always leads to intruder states. With the PS approximation, the computational savings are more modest. However, in conjunction with conservative cutoffs, it produces stable results. The EPS approximation to the fourth-order density matrices can reproduce very accurate NEVPT2 results without any intruder states. However, its computational cost is not much lower than that of the canonical algorithm. Moreover, we found that a good indicator of intrude states problems in any approximation to high order density matrices is the eigenspectra of the Koopmans matrices.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Park W, Lee S, Huix-Rotllant M, Filatov M, Choi CH. Impact of the Dynamic Electron Correlation on the Unusually Long Excited-State Lifetime of Thymine. J Phys Chem Lett 2021; 12:4339-4346. [PMID: 33929858 DOI: 10.1021/acs.jpclett.1c00712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-radiative relaxation of the photoexcited thymine in the gas phase shows an unusually long excited-state lifetime, and, over the years, a number of models, i.e., S1-trapping, S2-trapping, and S1&S2-trapping, have been put forward to explain its mechanism. Here, we investigate this mechanism using non-adiabatic molecular dynamics (NAMD) simulations in connection with the recently developed mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) method. We show that the previously predicted S2-trapping model was due to an artifact caused by an insufficient account of the dynamic electron correlation. The current work supports the S1-trapping mechanism with two lifetimes, τ1 = 30 ± 1 fs and τ2 = 6.1 ± 0.035 ps, quantitatively consistent with the recent time-resolved experiments. Upon excitation to the S2 (ππ*) state, thymine undergoes an ultrafast (ca. 30 fs) S2→S1 internal conversion and resides around the minimum on the S1 (nOπ*) surface, slowly decaying to the ground state (ca. 6.1 ps). While the S2→S1 internal conversion is mediated by fast bond length alternation distortion, the subsequent S1→S0 occurs through several conical intersections, involving a slow puckering motion.
Collapse
Affiliation(s)
- Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
21
|
Horbatenko Y, Lee S, Filatov M, Choi CH. How Beneficial Is the Explicit Account of Doubly-Excited Configurations in Linear Response Theory? J Chem Theory Comput 2021; 17:975-984. [DOI: 10.1021/acs.jctc.0c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yevhen Horbatenko
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
22
|
Blunt NS, Mahajan A, Sharma S. Efficient multireference perturbation theory without high-order reduced density matrices. J Chem Phys 2020; 153:164120. [DOI: 10.1063/5.0023353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
23
|
Chatterjee K, Sokolov AY. Extended Second-Order Multireference Algebraic Diagrammatic Construction Theory for Charged Excitations. J Chem Theory Comput 2020; 16:6343-6357. [DOI: 10.1021/acs.jctc.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Loos PF, Lipparini F, Boggio-Pasqua M, Scemama A, Jacquemin D. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. J Chem Theory Comput 2020; 16:1711-1741. [PMID: 31986042 DOI: 10.1021/acs.jctc.9b01216] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following our previous work focusing on compounds containing up to 3 non-hydrogen atoms [J. Chem. Theory Comput. 2018, 14, 4360-4379], we present here highly accurate vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine. To obtain these energies, we use equation-of-motion/linear-response coupled cluster theory up to the highest technically possible excitation order for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ) and selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space), as well as the multiconfigurational n-electron valence state perturbation theory (NEVPT2) method. All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/aug-cc-pVQZ vertical excitation energies as well as CC3/aug-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level methods with a typical deviation of ±0.04 eV, except for transitions with a dominant double excitation character where the error is much larger. The present contribution gathers a large, diverse, and accurate set of more than 200 highly accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, n → π*, π → π*, ...). We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, and NEVPT2. The results of these benchmarks are compared to the available literature data.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Denis Jacquemin
- CEISAM Lab, UMR 6230, Université de Nantes, CNRS, F-44000 Nantes, France
| |
Collapse
|
25
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
26
|
Mahajan A, Blunt NS, Sabzevari I, Sharma S. Multireference configuration interaction and perturbation theory without reduced density matrices. J Chem Phys 2019; 151:211102. [DOI: 10.1063/1.5128115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Nick S. Blunt
- Department of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Iliya Sabzevari
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
27
|
Chatterjee K, Sokolov AY. Second-Order Multireference Algebraic Diagrammatic Construction Theory for Photoelectron Spectra of Strongly Correlated Systems. J Chem Theory Comput 2019; 15:5908-5924. [DOI: 10.1021/acs.jctc.9b00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Bauman NP, Bylaska EJ, Krishnamoorthy S, Low GH, Wiebe N, Granade CE, Roetteler M, Troyer M, Kowalski K. Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms. J Chem Phys 2019; 151:014107. [PMID: 31272173 DOI: 10.1063/1.5094643] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we discuss the extension of the recently introduced subsystem embedding subalgebra coupled cluster (SES-CC) formalism to unitary CC formalisms. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC (DUCC) formalism, the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects-used to define the effective Hamiltonian-from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of CAS representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing. Given growing interest in quantum computing, we provide energies for H2 and Be systems obtained with the quantum phase estimator algorithm available in the Quantum Development Kit for the approximate DUCC Hamiltonians.
Collapse
Affiliation(s)
- Nicholas P Bauman
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Eric J Bylaska
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Sriram Krishnamoorthy
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Guang Hao Low
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Nathan Wiebe
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Christopher E Granade
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Martin Roetteler
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Matthias Troyer
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
29
|
Zimmerman PM, Rask AE. Evaluation of full valence correlation energies and gradients. J Chem Phys 2019; 150:244117. [PMID: 31255060 DOI: 10.1063/1.5100934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complete-active-space self-consistent field (CASSCF) wave functions are central to understanding strongly correlated molecules as they capture the entirety of electronic interactions within a subset of the orbital space. The most interesting case for CASSCF is the full valence limit, where all bonding and an equal number of virtual orbitals are included in the active space, and no approximation is made in selecting the important valence orbitals or electrons. While conventional algorithms require exponential computational time to evaluate full valence CASSCF, this article shows that the method of increments can do the same with polynomial effort, in a new method denoted iCASSCF. The method of increments can also provide density matrices and other necessary ingredients for the construction of the nuclear gradient. These goals are met through a many-body expansion that breaks the problem into smaller pieces that are subsequently reassembled to form close approximations of conventional CAS results. Practical demonstrations on a number of medium-sized molecules, with up to 116 valence electrons correlated in 116 orbitals, show the power of this methodology.
Collapse
Affiliation(s)
- Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| | - Alan E Rask
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
30
|
Garniron Y, Applencourt T, Gasperich K, Benali A, Ferté A, Paquier J, Pradines B, Assaraf R, Reinhardt P, Toulouse J, Barbaresco P, Renon N, David G, Malrieu JP, Véril M, Caffarel M, Loos PF, Giner E, Scemama A. Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs. J Chem Theory Comput 2019; 15:3591-3609. [DOI: 10.1021/acs.jctc.9b00176] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yann Garniron
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Thomas Applencourt
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kevin Gasperich
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anouar Benali
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anthony Ferté
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Julien Paquier
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Barthélémy Pradines
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, F-75005 Paris, France
| | - Roland Assaraf
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Peter Reinhardt
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Pierrette Barbaresco
- CALMIP, Université de Toulouse, CNRS, INPT, INSA, UPS, UMS 3667, Toulouse, France
| | - Nicolas Renon
- CALMIP, Université de Toulouse, CNRS, INPT, INSA, UPS, UMS 3667, Toulouse, France
| | | | - Jean-Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Mickaël Véril
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| |
Collapse
|
31
|
Sayfutyarova ER, Hammes-Schiffer S. Constructing Molecular π-Orbital Active Spaces for Multireference Calculations of Conjugated Systems. J Chem Theory Comput 2019; 15:1679-1689. [PMID: 30689378 PMCID: PMC6526033 DOI: 10.1021/acs.jctc.8b01196] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecules with conjugated π systems often feature strong electron correlation and therefore require multireference methods for a reliable computational description. A key prerequisite for the successful application of such methods is the choice of a suitable active space. Herein the automated π-orbital space (PiOS) method for selecting active spaces for multireference calculations of conjugated π systems is presented. This approach allows the construction of small but effective active spaces based on Hückel theory. To demonstrate its performance, π → π* excitations for benzene, octatetraene, and free-base porphine are computed. In addition, this technique can be combined with the automated atomic valence active space method to compute excitations in complex systems with multiple conjugated fragments. This combined approach was used to generate two-dimensional potential energy surfaces for multiple electronic states associated with photoinduced electron-coupled double proton transfer in the blue-light-using flavin photoreceptor protein. These types of methods for the automated selection of active space orbitals are important for ensuring consistency and reproducibility of multireference approaches for a wide range of chemical and biological systems.
Collapse
Affiliation(s)
- Elvira R. Sayfutyarova
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| |
Collapse
|
32
|
Roemelt M, Pantazis DA. Multireference Approaches to Spin‐State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Roemelt
- Lehrstuhl für Theoretische ChemieRuhr‐Universität Bochum 44780 Bochum Germany
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A. Pantazis
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
33
|
Sokolov AY. Multi-reference algebraic diagrammatic construction theory for excited states: General formulation and first-order implementation. J Chem Phys 2018; 149:204113. [DOI: 10.1063/1.5055380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
34
|
Pastorczak E, Pernal K. Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions. J Phys Chem Lett 2018; 9:5534-5538. [PMID: 30192553 DOI: 10.1021/acs.jpclett.8b02391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is demonstrated how the recently proposed multireference adiabatic-connection (AC) approximation for electron correlation energy ( Pernal , K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions . Phys. Rev. Lett. 2018 , 120 , 013001 ) can be extended to predicting correlation energy in excited states of molecules. It is the first successful application of the AC approach to computing excited-states energies of molecules using a complete active space (CAS) wave function as a reference. The unique feature of the AC-CAS approach with respect to popular methods such as CASPT2 and NEVPT2 is that it requires only one- and two-particle reduced density matrices, making it possible to efficiently treat large spaces of active electrons. Application of the simpler variant of AC, the AC0, which is based on the first-order expansion of the AC integrand at the uncorrelated system limit, to excited states yields excitation energies with accuracy rivaling that of the NEVPT2 method but at greatly reduced computational cost.
Collapse
Affiliation(s)
- Ewa Pastorczak
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| | - Katarzyna Pernal
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| |
Collapse
|
35
|
Song C, Martínez TJ. Reduced scaling CASPT2 using supporting subspaces and tensor hyper-contraction. J Chem Phys 2018; 149:044108. [DOI: 10.1063/1.5037283] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenchen Song
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
36
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
37
|
Guo S, Li Z, Chan GKL. A Perturbative Density Matrix Renormalization Group Algorithm for Large Active Spaces. J Chem Theory Comput 2018; 14:4063-4071. [DOI: 10.1021/acs.jctc.8b00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhendong Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
38
|
Copan AV, Sokolov AY. Linear-Response Density Cumulant Theory for Excited Electronic States. J Chem Theory Comput 2018; 14:4097-4108. [DOI: 10.1021/acs.jctc.8b00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas V. Copan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
39
|
Guo S, Li Z, Chan GKL. Communication: An efficient stochastic algorithm for the perturbative density matrix renormalization group in large active spaces. J Chem Phys 2018; 148:221104. [DOI: 10.1063/1.5031140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sheng Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhendong Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
40
|
Pastorczak E, Pernal K. Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions. J Chem Theory Comput 2018; 14:3493-3503. [DOI: 10.1021/acs.jctc.8b00213] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
41
|
Li C, Evangelista FA. Driven similarity renormalization group for excited states: A state-averaged perturbation theory. J Chem Phys 2018; 148:124106. [DOI: 10.1063/1.5019793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
42
|
Schriber JB, Evangelista FA. Adaptive Configuration Interaction for Computing Challenging Electronic Excited States with Tunable Accuracy. J Chem Theory Comput 2017; 13:5354-5366. [DOI: 10.1021/acs.jctc.7b00725] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Yanai T, Saitow M, Xiong XG, Chalupský J, Kurashige Y, Guo S, Sharma S. Multistate Complete-Active-Space Second-Order Perturbation Theory Based on Density Matrix Renormalization Group Reference States. J Chem Theory Comput 2017; 13:4829-4840. [DOI: 10.1021/acs.jctc.7b00735] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Takeshi Yanai
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, 444-8585 Aichi Japan
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masaaki Saitow
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Xiao-Gen Xiong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jakub Chalupský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16110 Prague 6, Czech Republic
| | - Yuki Kurashige
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606-8520, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sheng Guo
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sandeep Sharma
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado 80302, United States
| |
Collapse
|