1
|
Krogel JT, Ichibha T, Saritas K, Yoon M, Reboredo FA. Predictions of delafossite-hosted honeycomb and kagome phases. Phys Chem Chem Phys 2024; 26:8327-8333. [PMID: 38391147 DOI: 10.1039/d3cp04039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Delafossites, typically denoted by the formula ABO2, are a class of layered materials that exhibit a wide range of electronic and optical properties. Recently, the idea of modifying these delafossites into ordered kagome or honeycomb phases via strategic doping has emerged as a potential way to tailor these properties. In this study, we use high-throughput density functional theory calculations to explore many possible candidate kagome and honeycomb phases by considering dopants selected from the parent compounds of known ternary delafossite oxides from the inorganic crystal structure database. Our results indicate that while A-site in existing delafossites can host a limited range of elemental specifies, and display a low propensity for mixing or ordering, the oxide sub-units in the BO2 much more readily admit guest species. Our study identifies four candidate B-site kagome and fifteen candidate B-site honeycombs with a formation energy more than 50 meV f.u.-1 below other competing phases. The ability to predict and control the formation of these unique structures offers exciting opportunities in materials design, where innovative properties can be engineered through the selection of specific dopants. A number of these constitute novel correlated metals, which may be of interest for subsequent efforts in synthesis. These novel correlated metals may have significant implications for quantum computing, spintronics, and high-temperature superconductivity, thus inspiring future experimental synthesis and characterization of these proposed materials.
Collapse
Affiliation(s)
- Jaron T Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Tomohiro Ichibha
- School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Kayahan Saritas
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Fernando A Reboredo
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
2
|
Witman MD, Goyal A, Ogitsu T, McDaniel AH, Lany S. Defect graph neural networks for materials discovery in high-temperature clean-energy applications. NATURE COMPUTATIONAL SCIENCE 2023; 3:675-686. [PMID: 38177319 DOI: 10.1038/s43588-023-00495-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/05/2023] [Indexed: 01/06/2024]
Abstract
We present a graph neural network approach that fully automates the prediction of defect formation enthalpies for any crystallographic site from the ideal crystal structure, without the need to create defected atomic structure models as input. Here we used density functional theory reference data for vacancy defects in oxides, to train a defect graph neural network (dGNN) model that replaces the density functional theory supercell relaxations otherwise required for each symmetrically unique crystal site. Interfaced with thermodynamic calculations of reduction entropies and associated free energies, the dGNN model is applied to the screening of oxides in the Materials Project database, connecting the zero-kelvin defect enthalpies to high-temperature process conditions relevant for solar thermochemical hydrogen production and other energy applications. The dGNN approach is applicable to arbitrary structures with an accuracy limited principally by the amount and diversity of the training data, and it is generalizable to other defect types and advanced graph convolution architectures. It will help to tackle future materials discovery problems in clean energy and beyond.
Collapse
Affiliation(s)
| | - Anuj Goyal
- National Renewable Energy Laboratory, Golden, CO, USA
- Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Tadashi Ogitsu
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Stephan Lany
- National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
3
|
Ichibha T, Saritas K, Krogel JT, Luo Y, Kent PRC, Reboredo FA. Existence of La-site antisite defects in [Formula: see text] ([Formula: see text], Fe, and Co) predicted with many-body diffusion quantum Monte Carlo. Sci Rep 2023; 13:6703. [PMID: 37185382 PMCID: PMC10130183 DOI: 10.1038/s41598-023-33578-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The properties of [Formula: see text] (M: 3d transition metal) perovskite crystals are significantly dependent on point defects, whether introduced accidentally or intentionally. The most studied defects in La-based perovskites are the oxygen vacancies and doping impurities on the La and M sites. Here, we identify that intrinsic antisite defects, the replacement of La by the transition metal, M, can be formed under M-rich and O-poor growth conditions, based on results of an accurate many-body ab initio approach. Our fixed-node diffusion Monte Carlo (FNDMC) calculations of [Formula: see text] ([Formula: see text], Fe, and Co) find that such antisite defects can have low formation energies and are magnetized. Complementary density functional theory (DFT)-based calculations show that Mn antisite defects in [Formula: see text] may cause the p-type electronic conductivity. These features could affect spintronics, redox catalysis, and other broad applications. Our bulk validation studies establish that FNDMC reproduces the antiferromagnetic state of [Formula: see text], whereas DFT with PBE (Perdew-Burke-Ernzerhof), SCAN (strongly constrained and appropriately normed), and the LDA+U (local density approximation with Coulomb U) functionals all favor ferromagnetic states, at variance with experiment.
Collapse
Affiliation(s)
- Tom Ichibha
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292 Japan
| | - Kayahan Saritas
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ye Luo
- Computational Sciences Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Paul R. C. Kent
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Fernando A. Reboredo
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
4
|
Shi BX, Kapil V, Zen A, Chen J, Alavi A, Michaelides A. General embedded cluster protocol for accurate modeling of oxygen vacancies in metal-oxides. J Chem Phys 2022; 156:124704. [DOI: 10.1063/5.0087031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The O vacancy (Ov) formation energy, EOv, is an important property of a metal-oxide, governing its performance in applications such as fuel cells or heterogeneous catalysis. These defects are routinely studied with density functional theory (DFT). However, it is well-recognized that standard DFT formulations (e.g., the generalized gradient approximation) are insufficient for modeling the Ov, requiring higher levels of theory. The embedded cluster method offers a promising approach to compute EOv accurately, giving access to all electronic structure methods. Central to this approach is the construction of quantum(-mechanically treated) clusters placed within suitable embedding environments. Unfortunately, current approaches to constructing the quantum clusters either require large system sizes, preventing application of high-level methods, or require significant manual input, preventing investigations of multiple systems simultaneously. In this work, we present a systematic and general quantum cluster design protocol that can determine small converged quantum clusters for studying the Ov in metal-oxides with accurate methods, such as local coupled cluster with single, double, and perturbative triple excitations. We apply this protocol to study the Ov in the bulk and surface planes of rutile TiO2 and rock salt MgO, producing the first accurate and well-converged determinations of EOv with this method. These reference values are used to benchmark exchange–correlation functionals in DFT, and we find that all the studied functionals underestimate EOv, with the average error decreasing along the rungs of Jacob’s ladder. This protocol is automatable for high-throughput calculations and can be generalized to study other point defects or adsorbates.
Collapse
Affiliation(s)
- Benjamin X. Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Venkat Kapil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Churchill College, University of Cambridge, Storey’s Way, Cambridge CB3 0DS, United Kingdom
| | - Andrea Zen
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Ali Alavi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| |
Collapse
|
5
|
Krogel JT, Reboredo FA. Hybridizing pseudo-Hamiltonians and non-local pseudopotentials in diffusion Monte Carlo. J Chem Phys 2020; 153:104111. [DOI: 10.1063/5.0016778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Fernando A. Reboredo
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
6
|
Jana S, Patra A, Constantin LA, Samal P. Screened range-separated hybrid by balancing the compact and slowly varying density regimes: Satisfaction of local density linear response. J Chem Phys 2020; 152:044111. [PMID: 32007058 DOI: 10.1063/1.5131530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due to their quantitative accuracy and ability to solve several difficulties, screened range-separated hybrid exchange-correlation functionals are now a standard approach for ab initio simulation of condensed matter systems. However, the screened range-separated hybrid functionals proposed so far are biased either toward compact or slowly varying densities. In this paper, we propose a screened range-separated hybrid functional, named HSEint, which can well describe these density regimes, achieving good accuracy for both molecular and solid-state systems. The semilocal part of the proposed functional is based on the PBEint generalized gradient approximation [E. Fabiano et al., Phys. Rev. B 82, 113104 (2010)], constructed for hybrid interfaces. To improve the functional performance, we employ exact or nearly exact constraints in the construction of range-separated hybrid functional, such as recovering of the local density linear response and semiclassical atom linear response.
Collapse
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A Constantin
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
7
|
Santana JA, Krogel JT, Okamoto S, Reboredo FA. Electron Confinement and Magnetism of (LaTiO3)1/(SrTiO3)5 Heterostructure: A Diffusion Quantum Monte Carlo Study. J Chem Theory Comput 2019; 16:643-650. [DOI: 10.1021/acs.jctc.9b00678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan A. Santana
- Department of Chemistry, University of Puerto Rico at Cayey, P.O. Box 372230, Cayey, PR 00737-2230, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Satoshi Okamoto
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Fernando A. Reboredo
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Luo Y, Esler KP, Kent PRC, Shulenburger L. An efficient hybrid orbital representation for quantum Monte Carlo calculations. J Chem Phys 2018; 149:084107. [DOI: 10.1063/1.5037094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ye Luo
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kenneth P. Esler
- Stone Ridge Technology, 2015 Emmorton Rd. Suite 204, Bel Air, Maryland 21015, USA
| | - Paul R. C. Kent
- Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Luke Shulenburger
- HEDP Theory Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
9
|
Kim J, Baczewski AT, Beaudet TD, Benali A, Bennett MC, Berrill MA, Blunt NS, Borda EJL, Casula M, Ceperley DM, Chiesa S, Clark BK, Clay RC, Delaney KT, Dewing M, Esler KP, Hao H, Heinonen O, Kent PRC, Krogel JT, Kylänpää I, Li YW, Lopez MG, Luo Y, Malone FD, Martin RM, Mathuriya A, McMinis J, Melton CA, Mitas L, Morales MA, Neuscamman E, Parker WD, Pineda Flores SD, Romero NA, Rubenstein BM, Shea JAR, Shin H, Shulenburger L, Tillack AF, Townsend JP, Tubman NM, Van Der Goetz B, Vincent JE, Yang DC, Yang Y, Zhang S, Zhao L. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:195901. [PMID: 29582782 DOI: 10.1088/1361-648x/aab9c3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Collapse
Affiliation(s)
- Jeongnim Kim
- Intel Corporation, Hillsboro, OR 987124, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dzubak AL, Mitra C, Chance M, Kuhn S, Jellison GE, Sefat AS, Krogel JT, Reboredo FA. MnNiO3 revisited with modern theoretical and experimental methods. J Chem Phys 2017; 147:174703. [DOI: 10.1063/1.5000847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Allison L. Dzubak
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Chandrima Mitra
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michael Chance
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephen Kuhn
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gerald E. Jellison
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Athena S. Sefat
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Fernando A. Reboredo
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
Santana JA, Mishra R, Krogel JT, Borisevich AY, Kent PRC, Pantelides ST, Reboredo FA. Quantum Many-Body Effects in Defective Transition-Metal-Oxide Superlattices. J Chem Theory Comput 2017; 13:5604-5609. [DOI: 10.1021/acs.jctc.7b00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan A. Santana
- Department
of Chemistry, University of Puerto Rico at Cayey, P.O. Box 372230, Cayey, Puerto Rico 00737-2230, United States
| | - Rohan Mishra
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Mechanical Engineering and Materials Science and the Institute
of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | | | | | | | - Sokrates T. Pantelides
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | |
Collapse
|