1
|
Schröder N, Bartalucci E, Wiegand T. Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More. Chemphyschem 2024; 25:e202400537. [PMID: 39129653 DOI: 10.1002/cphc.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Indexed: 08/13/2024]
Abstract
Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.
Collapse
Affiliation(s)
- Nina Schröder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
2
|
Tanaka H, Kuwahata K, Tachikawa M, Udagawa T. Nuclear quantum and H/D isotope effects on aromaticity: path integral molecular dynamics study. Phys Chem Chem Phys 2024; 26:19934-19939. [PMID: 38993110 DOI: 10.1039/d4cp01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Aromaticity is an important concept in organic chemistry, and thus, many theoretical and experimental studies have been conducted so far. However, the majority of theoretical studies have concentrated on the aromaticity of the stationary point structures. Herein, the influence of nuclear quantum fluctuation (nuclear quantum effects: NQEs) and thermal fluctuation on the aromaticity of benzene have been analyzed by path integral molecular dynamics (PIMD) simulation. The PIMD simulations revealed that the NQEs affected not only the C-H bonds but also the C-C bonds. The HOMA and NICS calculations demonstrated that the aromaticity decreased due to the NQEs of carbon atoms, attributed to an increase in the contribution from specific vibrational modes strongly correlated with benzene's aromaticity.
Collapse
Affiliation(s)
- Hikaru Tanaka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Kazuaki Kuwahata
- Graduate School of NanobioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Graduate School of NanobioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Bartalucci E, Malär AA, Mehnert A, Kleine Büning JB, Günzel L, Icker M, Börner M, Wiebeler C, Meier BH, Grimme S, Kersting B, Wiegand T. Probing a Hydrogen-π Interaction Involving a Trapped Water Molecule in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202217725. [PMID: 36630178 DOI: 10.1002/anie.202217725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
The detection and characterization of trapped water molecules in chemical entities and biomacromolecules remains a challenging task for solid materials. We herein present proton-detected solid-state Nuclear Magnetic Resonance (NMR) experiments at 100 kHz magic-angle spinning and at high static magnetic-field strengths (28.2 T) enabling the detection of a single water molecule fixed in the calix[4]arene cavity of a lanthanide complex by a combination of three types of non-covalent interactions. The water proton resonances are detected at a chemical-shift value close to zero ppm, which we further confirm by quantum-chemical calculations. Density Functional Theory calculations pinpoint to the sensitivity of the proton chemical-shift value for hydrogen-π interactions. Our study highlights how proton-detected solid-state NMR is turning into the method-of-choice in probing weak non-covalent interactions driving a whole branch of molecular-recognition events in chemistry and biology.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | | | - Anne Mehnert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Julius B Kleine Büning
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Lennart Günzel
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Maik Icker
- Institute of Organic Chemistry, Leipzig University Linnéstraße 3, 04103, Leipzig, Germany
| | - Martin Börner
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Wiebeler
- Institute of Analytic Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103, Leipzig, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Thomas Wiegand
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,previous address: Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
4
|
Al-Ani A, Szell PMJ, Rehman Z, Blade H, Wheatcroft HP, Hughes LP, Brown SP, Wilson CC. Combining X-ray and NMR Crystallography to Explore the Crystallographic Disorder in Salbutamol Oxalate. CRYSTAL GROWTH & DESIGN 2022; 22:4696-4707. [PMID: 35971412 PMCID: PMC9374327 DOI: 10.1021/acs.cgd.1c01093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Salbutamol is an active pharmaceutical ingredient commonly used to treat respiratory distress and is listed by the World Health Organization as an essential medicine. Here, we establish the crystal structure of its oxalate form, salbutamol oxalate, and explore the nature of its crystallographic disorder by combined X-ray crystallography and 13C cross-polarization (CP) magic-angle spinning (MAS) solid-state NMR. The *C-OH chiral center of salbutamol (note that the crystal structures are a racemic mixture of the two enantiomers of salbutamol) is disordered over two positions, and the tert-butyl group is rotating rapidly, as revealed by 13C solid-state NMR. The impact of crystallization conditions on the disorder was investigated, finding variations in the occupancy ratio of the *C-OH chiral center between single crystals and a consistency across samples in the bulk powder. Overall, this work highlights the contrast between investigating crystallographic disorder by X-ray diffraction and solid-state NMR experiment, and gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) calculations, with their combined use, yielding an improved understanding of the nature of the crystallographic disorder between the local (i.e., as viewed by NMR) and longer-range periodic (i.e., as viewed by diffraction) scale.
Collapse
Affiliation(s)
- Aneesa
J. Al-Ani
- Centre
for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | | | - Zainab Rehman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Helen Blade
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Helen P. Wheatcroft
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Leslie P. Hughes
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Chick C. Wilson
- Centre
for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
5
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
6
|
Southern SA, Bryce DL. To what extent do bond length and angle govern the 13C and 1H NMR response to weak CH⋯O hydrogen bonds? A case study of caffeine and theophylline cocrystals. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 119:101795. [PMID: 35569343 DOI: 10.1016/j.ssnmr.2022.101795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Weak hydrogen bonds are important structure-directing elements in supramolecular chemistry and biochemistry. We consider here weak CH⋯O hydrogen bonds in a series of cocrystals of theophylline and caffeine and assess to what extent the CH⋯O distance and angle govern the observed 13C and 1H isotropic chemical shifts. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations consistently predict a decrease in the 13C and 1H magnetic shielding constants upon hydrogen bond formation on the order of 2-5 ppm (13C) and 1-2 ppm (1H). These trends are reproduced using the machine-learning approach implemented in ShiftML. Experimental 13C and 1H chemical shifts obtained for powdered samples using one-dimensional NMR spectroscopy as well as heteronuclear correlation (HETCOR) spectroscopy correlate well with the GIPAW DFT results. However, the experimental 13C NMR response only correlates moderately well with the hydrogen bond length and angle, while the experimental 1H chemical shifts only show very weak correlations to these local structural elements. DFT computations on isolated imidazole-formaldehyde models show that the 13C and 1H chemical shifts generally decrease with the C⋯O distance but show no clear dependence on the CH⋯O angle. These results demonstrate that the 13C and 1H response to weak CH⋯O hydrogen bonding is influenced significantly by additional weak contacts within cocrystal heterodimeric units.
Collapse
Affiliation(s)
- Scott A Southern
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
7
|
Szell PMJ, Nilsson Lill SO, Blade H, Brown SP, Hughes LP. A toolbox for improving the workflow of NMR crystallography. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 116:101761. [PMID: 34736104 DOI: 10.1016/j.ssnmr.2021.101761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
NMR crystallography is a powerful tool with applications in structural characterization and crystal structure verification, to name two. However, applying this tool presents several challenges, especially for industrial users, in terms of consistency, workflow, time consumption, and the requirement for a high level of understanding of experimental solid-state NMR and GIPAW-DFT calculations. Here, we have developed a series of fully parameterized scripts for use in Materials Studio and TopSpin, based on the .magres file format, with a focus on organic molecules (e.g. pharmaceuticals), improving efficiency, robustness, and workflow. We separate these tools into three major categories: performing the DFT calculations, extracting & visualizing the results, and crystallographic modelling. These scripts will rapidly submit fully parameterized CASTEP jobs, extract data from the calculations, assist in visualizing the results, and expedite the process of structural modelling. Accompanied with these tools is a description on their functionality, documentation on how to get started and use the scripts, and links to video tutorials for guiding new users. Through the use of these tools, we hope to facilitate NMR crystallography and to harmonize the process across users.
Collapse
Affiliation(s)
| | - Sten O Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| |
Collapse
|
8
|
Mames A, Pietrzak M, Bernatowicz P, Kubas A, Luboradzki R, Ratajczyk T. NMR Crystallography Enhanced by Quantum Chemical Calculations and Liquid State NMR Spectroscopy for the Investigation of Se-NHC Adducts*. Chemistry 2021; 27:16477-16487. [PMID: 34606111 DOI: 10.1002/chem.202102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 11/11/2022]
Abstract
N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77 Se liquid state NMR of Se-NHC adducts. We demonstrate that 77 Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77 Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77 Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13 C isotropic chemical shift from the liquid state NMR and the 13 C tensor components are also discussed, and compared with their 77 Se counterparts. 77 Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77 Se NMR can provide an in-depth outlook on the properties of NHC ligands.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Bernatowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
9
|
Corlett EK, Blade H, Hughes LP, Sidebottom PJ, Walker D, Walton RI, Brown SP. 5-amino-2-methylpyridinium hydrogen fumarate: An XRD and NMR crystallography analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1026-1035. [PMID: 32187751 DOI: 10.1002/mrc.5021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Single-crystal X-ray diffraction structures of the 5-amino-2-methylpyridinium hydrogen fumarate salt have been solved at 150 and 300 K (CCDC 1952142 and 1952143). A base-acid-base-acid ring is formed through pyridinium-carboxylate and amine-carboxylate hydrogen bonds that hold together chains formed from hydrogen-bonded hydrogen fumarate ions. 1 H and 13 C chemical shifts as well as 14 N shifts that additionally depend on the quadrupolar interaction are determined by experimental magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) and gauge-including projector-augmented wave (GIPAW) calculation. Two-dimensional homonuclear 1 H-1 H double-quantum (DQ) MAS and heteronuclear 1 H-13 C and 14 N-1 H spectra are presented. Only small differences of up to 0.1 and 0.6 ppm for 1 H and 13 C are observed between GIPAW calculations starting with the two structures solved at 150 and 300 K (after geometry optimisation of atomic positions, but not unit cell parameters). A comparison of GIPAW-calculated 1 H chemical shifts for isolated molecules and the full crystal structures is indicative of hydrogen bonding strength.
Collapse
Affiliation(s)
| | - Helen Blade
- Pharmaceutical Development, AstraZeneca, Macclesfield, UK
| | | | | | - David Walker
- Department of Physics, University of Warwick, Coventry, UK
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
10
|
Blade H, Blundell CD, Brown SP, Carson J, Dannatt HRW, Hughes LP, Menakath AK. Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid. J Phys Chem A 2020; 124:8959-8977. [DOI: 10.1021/acs.jpca.0c07000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | | | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Jake Carson
- Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | | |
Collapse
|
11
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
12
|
Zilka M, Yates JR, Brown SP. An NMR crystallography investigation of furosemide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:191-199. [PMID: 30141257 PMCID: PMC6492277 DOI: 10.1002/mrc.4789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
This paper presents an NMR crystallography study of three polymorphs of furosemide. Experimental magic-angle spinning (MAS) solid-state NMR spectra are reported for form I of furosemide, and these are assigned using density-functional theory (DFT)-based gauge-including projector augmented wave (GIPAW) calculations. Focusing on the three known polymorphs, we examine the changes to the NMR parameters due to crystal packing effects. We use a recently developed formalism to visualise which regions are responsible for the chemical shielding of particular sites and hence understand the variation in NMR parameters between the three polymorphs.
Collapse
Affiliation(s)
- Miri Zilka
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| | | | - Steven P. Brown
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| |
Collapse
|
13
|
Sturniolo S, Yates JR. The Lorentz sphere visualised. J Chem Phys 2019; 150:094103. [DOI: 10.1063/1.5080298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- S. Sturniolo
- Scientific Computing Department, UKRI, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - J. R. Yates
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
14
|
Corlett EK, Blade H, Hughes LP, Sidebottom PJ, Walker D, Walton RI, Brown SP. An XRD and NMR crystallographic investigation of the structure of 2,6-lutidinium hydrogen fumarate. CrystEngComm 2019. [DOI: 10.1039/c9ce00633h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A crystallographic study highlighting the benefits of a combined XRD and NMR approach in investigating both stability and variation within an organic multicomponent crystal.
Collapse
Affiliation(s)
| | - Helen Blade
- Pharmaceutical Development
- AstraZeneca
- Macclesfield
- UK
| | | | | | - David Walker
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|