1
|
Clark JA, Prabhu VM, Douglas JF. Molecular Dynamics Simulation of the Influence of Temperature and Salt on the Dynamic Hydration Layer in a Model Polyzwitterionic Polymer PAEDAPS. J Phys Chem B 2023; 127:8185-8198. [PMID: 37668318 PMCID: PMC10578162 DOI: 10.1021/acs.jpcb.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We investigate the hydration of poly(3-[2-(acrylamido) ethyldimethylammonio] propanesulfonate) over a range of temperatures in pure water and with the inclusion of 0.1 mol/L NaCl using atomistic molecular dynamics simulation. Drawing on concepts drawn from the field of glass-forming liquids, we use the Debye-Waller parameter () for describing the water mobility gradient around the polybetaine backbone extending to an overall distance ≈18 Å. The water mobility in this layer is defined through the mean-square water molecule displacement at a time on the order of water's β-relaxation time. The brushlike topology of polybetaines leads to two regions in the dynamic hydration layer. The inner region of ≈10.5 Å is explored by pendant group conformational motions, and the outer region of ≈7.5 Å represents an extended layer of reduced water mobility relative to bulk water. The dynamic hydration layer extends far beyond the static hydration layer, adjacent to the polymer.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Mohammadyarloo Z, Sommer JU. Co-nonsolvency Transition in Polymer Solutions: A Simulation Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Mohammadyarloo
- Leibniz-Institute fur Polymerforschung Dresden, Institute Theory of Polymers, Hohe Strasse 6, 01069Dresden, Germany
- Institute for Theoretical Physics, TU Dresden, Zellescher Weg 17, 01069Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institute fur Polymerforschung Dresden, Institute Theory of Polymers, Hohe Strasse 6, 01069Dresden, Germany
- Institute for Theoretical Physics, TU Dresden, Zellescher Weg 17, 01069Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307Dresden, Germany
| |
Collapse
|
3
|
Xu X, Douglas JF, Xu WS. Thermodynamic–Dynamic Interrelations in Glass-Forming Polymer Fluids. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
4
|
Ma Y, Ali S, Prabhu VM. Enhanced Concentration Fluctuations in Model Polyelectrolyte Coacervate Mixtures along a Salt Isopleth Phase Diagram. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Samim Ali
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
5
|
Heczko D, Jurkiewicz K, Grelska J, Kamiński K, Paluch M, Kamińska E. Influence of High Pressure on the Local Order and Dynamical Properties of the Selected Azole Antifungals. J Phys Chem B 2020; 124:11949-11961. [PMID: 33325713 DOI: 10.1021/acs.jpcb.0c08083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dielectric studies under various temperature (T) and pressure (p) conditions on five active pharmaceutical ingredients (APIs) with antifungal properties-itraconazole (ITZ), posaconazole (POS), terconazole (TER), ketoconazole (KET), and fluconazole (FLU)-were carried out. We have thoroughly studied the connection between the pressure coefficient of the glass transition temperature (dTg/dp) and the activation volume of both relaxation modes (ΔVα, ΔVδ/α') with respect to the molecular weight (Mw) or molar volume (Vm) in these systems. Besides, high pressure data revealed that the time scale separation between α- and δ- or α'-processes increases with pressure in ITZ and TER. What is more, the activation entropy, which is a measure of cooperativity, calculated from the Eyring model for the secondary (β)-relaxation in ITZ and POS, increased and decreased, respectively, in the compressed samples. To understand these peculiar results, we have carried out X-ray diffraction (XRD) measurements on the pressure-densified glasses and found that pressure may induce frustration in molecular organization and destroy the medium-range order while enhancing the short-range correlations between molecules. This finding allowed us to conclude that varying molecular spatial arrangement is responsible for the extraordinary dynamical behavior of ITZ, POS, and TER at high pressure.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Joanna Grelska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Permeability hysteresis of polypyrrole-polysulfone blend ultrafiltration membranes: study of phase separation thermodynamics and pH responsive membrane properties. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Xu X, Ballauff M. Interaction of Lysozyme with a Dendritic Polyelectrolyte: Quantitative Analysis of the Free Energy of Binding and Comparison to Molecular Dynamics Simulations. J Phys Chem B 2019; 123:8222-8231. [DOI: 10.1021/acs.jpcb.9b07448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, 210094 Nanjing, P. R. China
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
8
|
Tanaka F, Nakagawa Y, Ohta S, Ito T. Thermoreversible gelation with ion-binding cross-links of variable multiplicity. J Chem Phys 2019; 150:174904. [PMID: 31067904 DOI: 10.1063/1.5096546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thermoreversible gelation and liquid-liquid phase separation are theoretically studied for the gels of polyfunctional molecules (polymers) whose network junctions are formed by complexation of functional groups on the polymer chains with added metal ions. Phase diagrams on the polymer/ion/solvent concentration plane, including both sol-gel transition lines and liquid-liquid phase separation lines (spinodals), are derived as functions of the polymer functionality, molecular weight, maximum coordination number of ions, and temperature. Binding isotherms of ions are also calculated as functions of the ion concentration. Results of the calculated sol-gel transition lines are compared with our recent experimental data on gelation of star block and telechelic, acrylic copolymers cross-linked by iron ions. It is shown that, owing to reaction stoichiometry, there is an optimal ion concentration at which the solution gels for the lowest polymer concentration and also that a re-entrant sol phase appears in the ion concentrations higher than the optimal one. The effect of stepwise complex formation constants on the re-entrant phase is studied in detail.
Collapse
Affiliation(s)
| | - Yoshiyuki Nakagawa
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Shao X, Cui X, Wang M, Cai W. High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:83-89. [PMID: 30684883 DOI: 10.1016/j.saa.2019.01.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Derivative calculation is a powerful method for resolution enhancement in spectral analysis. A high order derivative method based on continuous wavelet transform (CWT) is discussed in the analysis of near infrared (NIR) spectra. The results for a simulated spectrum obtained from conventional numerical differentiation (NM), Fourier transform (FT), Savitzky-Golay (SG) and CWT method were compared. CWT method was found to be as efficient as FT and SG, but easier for high order derivative computation, and the fourth order derivative was proved to be a good choice for resolution enhancement as well as reduction of noise and sidelobe effects. For the NIR spectra of water-ethanol mixtures, the complexity of the spectra can be observed from the fourth derivative, including the spectral features of OH and CH with various intermolecular interactions. Fitting the derivative spectra of the mixtures by those of pure water and ethanol, the obtained coefficients for ethanol show a linear relation with the content but that for water exhibit a non-linear relation, which reveals the influence of ethanol on water structure in the mixture. Furthermore, the information of the water-ethanol clusters was found in the residual spectra after the fitting. Therefore, high order derivative can be an efficient way to improve the resolution of NIR spectra for understanding the interactions in aqueous solutions.
Collapse
Affiliation(s)
- Xueguang Shao
- Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006, China; Research Center for Analytical Sciences, College of Chemistry, Nankai University. Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Xiaoyu Cui
- Research Center for Analytical Sciences, College of Chemistry, Nankai University. Tianjin 300071, China
| | - Mian Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University. Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University. Tianjin 300071, China
| |
Collapse
|
10
|
Dudowicz J, Douglas JF, Freed KF. Lattice theory of competitive binding: Influence of van der Waals interactions on molecular binding and adsorption to a solid substrate from binary liquid mixtures. J Chem Phys 2018; 149:044704. [PMID: 30068175 DOI: 10.1063/1.5040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reversible binding of molecules to surfaces is one of the most fundamental processes in condensed fluids, with obvious applications in the molecular separation of materials, chromatographic characterization, and material processing. Motivated in particular by the ubiquitous occurrence of binding processes in molecular biology and self-assembly, we have developed a lattice type theory of competitive molecular binding to solid substrates from binary mixtures of two small molecule liquids that interact between themselves by van der Waals forces in addition to exhibiting binding interactions with the solid surface. The derived theory, in contrast to previously existing theoretical frameworks, enables us to investigate the influence of van der Waals interactions on interfacial binding and selective molecular adsorption. For reference, the classic Langmuir theory of adsorption is recovered when all van der Waals interaction energies between the molecules in the bulk liquid phase and those on the surface are formally set to zero. Illustrative calculations are performed for the binding of molecules to a solid surface from pure liquids and from their binary mixtures. The properties analyzed include the surface coverage θ, the binding transition temperature Tbind, the individual surface coverages, θA and θC, and the relative surface coverages, σAC≡θA/θC or σCA≡θC/θA. The latter two quantities coincide with the degrees of adsorption directly determined from experimental adsorption measurements. The Langmuir theory is shown to apply formally under a wide range of conditions where the original enthalpies (Δh or ΔhA and ΔhC) and entropies (Δs or ΔsA and ΔsC) of the binding reactions are simply replaced by their respective "effective" counterparts (Δheff or ΔhAeff and ΔhCeff and Δseff or ΔsAeff and ΔsCeff), whose values depend on the strength of der Waals interactions and of the "bare" free energy parameters (Δh or ΔhA and ΔhC, and Δs or ΔsA and ΔsC). Numerous instances of entropy-enthalpy compensation between these effective free energy parameters follow from our calculations, confirming previous reports on this phenomenon obtained from experimental studies of molecular binding processes in solution.
Collapse
Affiliation(s)
- Jacek Dudowicz
- Department of Chemistry, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Karl F Freed
- Department of Chemistry, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Andreev M, de Pablo JJ, Chremos A, Douglas JF. Influence of Ion Solvation on the Properties of Electrolyte Solutions. J Phys Chem B 2018; 122:4029-4034. [DOI: 10.1021/acs.jpcb.8b00518] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marat Andreev
- Institute of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Institute of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Vargas-Lara F, Starr FW, Douglas JF. Molecular rigidity and enthalpy-entropy compensation in DNA melting. SOFT MATTER 2017; 13:8309-8330. [PMID: 29057399 DOI: 10.1039/c7sm01220a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enthalpy-entropy compensation (EEC) is observed in diverse molecular binding processes of importance to living systems and manufacturing applications, but this widely occurring phenomenon is not sufficiently understood from a molecular physics standpoint. To gain insight into this fundamental problem, we focus on the melting of double-stranded DNA (dsDNA) since measurements exhibiting EEC are extensive for nucleic acid complexes and existing coarse-grained models of DNA allow us to explore the influence of changes in molecular parameters on the energetic parameters by using molecular dynamics simulations. Previous experimental and computational studies have indicated a correlation between EEC and changes in molecular rigidity in certain binding-unbinding processes, and, correspondingly, we estimate measures of DNA molecular rigidity under a wide range of conditions, along with resultant changes in the enthalpy and entropy of binding. In particular, we consider variations in dsDNA rigidity that arise from changes of intrinsic molecular rigidity such as varying the associative interaction strength between the DNA bases, the length of the DNA chains, and the bending stiffness of the individual DNA chains. We also consider extrinsic changes of molecular rigidity arising from the addition of polymer additives and geometrical confinement of DNA between parallel plates. All our computations confirm EEC and indicate that this phenomenon is indeed highly correlated with changes in molecular rigidity. However, two distinct patterns relating to how DNA rigidity influences the entropy of association emerge from our analysis. Increasing the intrinsic DNA rigidity increases the entropy of binding, but increases in molecular rigidity from external constraints decreases the entropy of binding. EEC arises in numerous synthetic and biological binding processes and we suggest that changes in molecular rigidity might provide a common origin of this ubiquitous phenomenon in the mutual binding and unbinding of complex molecules.
Collapse
Affiliation(s)
- Fernando Vargas-Lara
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|