1
|
Noid WG, Szukalo RJ, Kidder KM, Lesniewski MC. Rigorous Progress in Coarse-Graining. Annu Rev Phys Chem 2024; 75:21-45. [PMID: 38941523 DOI: 10.1146/annurev-physchem-062123-010821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Low-resolution coarse-grained (CG) models provide remarkable computational and conceptual advantages for simulating soft materials. In principle, bottom-up CG models can reproduce all structural and thermodynamic properties of atomically detailed models that can be observed at the resolution of the CG model. This review discusses recent progress in developing theory and computational methods for achieving this promise. We first briefly review variational approaches for parameterizing interaction potentials and their relationship to machine learning methods. We then discuss recent approaches for simultaneously improving both the transferability and thermodynamic properties of bottom-up models by rigorously addressing the density and temperature dependence of these potentials. We also briefly discuss exciting progress in modeling high-resolution observables with low-resolution CG models. More generally, we highlight the essential role of the bottom-up framework not only for fundamentally understanding the limitations of prior CG models but also for developing robust computational methods that resolve these limitations in practice.
Collapse
Affiliation(s)
- W G Noid
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Ryan J Szukalo
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
- Current affiliation: Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Katherine M Kidder
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Maria C Lesniewski
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
2
|
Wu Z, Zhou T. Structural Coarse-Graining via Multiobjective Optimization with Differentiable Simulation. J Chem Theory Comput 2024; 20:2605-2617. [PMID: 38483262 DOI: 10.1021/acs.jctc.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In the realm of multiscale molecular simulations, structure-based coarse-graining is a prominent approach for creating efficient coarse-grained (CG) representations of soft matter systems, such as polymers. This involves optimizing CG interactions by matching static correlation functions of the corresponding degrees of freedom in all-atom (AA) models. Here, we present a versatile method, namely, differentiable coarse-graining (DiffCG), which combines multiobjective optimization and differentiable simulation. The DiffCG approach is capable of constructing robust CG models by iteratively optimizing the effective potentials to simultaneously match multiple target properties. We demonstrate our approach by concurrently optimizing bonded and nonbonded potentials of a CG model of polystyrene (PS) melts. The resulting CG-PS model effectively reproduces both the structural characteristics, such as the equilibrium probability distribution of microscopic degrees of freedom and the thermodynamic pressure of the AA counterpart. More importantly, leveraging the multiobjective optimization capability, we develop a precise and efficient CG model for PS melts that is transferable across a wide range of temperatures, i.e., from 400 to 600 K. It is achieved via optimizing a pairwise potential with nonlinear temperature dependence in the CG model to simultaneously match target data from AA-MD simulations at multiple thermodynamic states. The temperature transferable CG-PS model demonstrates its ability to accurately predict the radial distribution functions and density at different temperatures, including those that are not included in the target thermodynamic states. Our work opens up a promising route for developing accurate and transferable CG models of complex soft-matter systems through multiobjective optimization with differentiable simulation.
Collapse
Affiliation(s)
- Zhenghao Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| |
Collapse
|
3
|
Lesniewski MC, Noid WG. Insight into the Density-Dependence of Pair Potentials for Predictive Coarse-Grained Models. J Phys Chem B 2024; 128:1298-1316. [PMID: 38271676 DOI: 10.1021/acs.jpcb.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigate the temperature- and density-dependence of effective pair potentials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and tetrahydrofuran. We observe that the calculated pair potentials are much more sensitive to density than to temperature. The generalized-Yvon-Born-Green framework reveals that this striking density-dependence reflects corresponding variations in the many-body correlations that determine the environment-mediated indirect contribution to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this density-dependence is not important for accurately modeling the intermolecular structure. Accordingly, we adopt a density-independent interaction potential and transfer the density-dependence of the calculated pair potentials into a configuration-independent volume potential. Furthermore, we develop a single global potential that accurately models the intermolecular structure and pressure-volume equation of state across a very wide range of liquid state points. Consequently, this work provides fundamental insight into the density-dependence of effective pair potentials and also provides a significant step toward developing predictive CG models for efficiently modeling industrial solvents.
Collapse
Affiliation(s)
- Maria C Lesniewski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Jin J, Hwang J, Voth GA. Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability. J Chem Phys 2023; 159:184105. [PMID: 37942867 DOI: 10.1063/5.0160567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system's characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Jisung Hwang
- Department of Statistics, The University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Ge P, Zhang L, Lei H. Machine learning assisted coarse-grained molecular dynamics modeling of meso-scale interfacial fluids. J Chem Phys 2023; 158:064104. [PMID: 36792498 DOI: 10.1063/5.0131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A hallmark of meso-scale interfacial fluids is the multi-faceted, scale-dependent interfacial energy, which often manifests different characteristics across the molecular and continuum scale. The multi-scale nature imposes a challenge to construct reliable coarse-grained (CG) models, where the CG potential function needs to faithfully encode the many-body interactions arising from the unresolved atomistic interactions and account for the heterogeneous density distributions across the interface. We construct the CG models of both single- and two-component polymeric fluid systems based on the recently developed deep coarse-grained potential [Zhang et al., J. Chem. Phys. 149, 034101 (2018)] scheme, where each polymer molecule is modeled as a CG particle. By only using the training samples of the instantaneous force under the thermal equilibrium state, the constructed CG models can accurately reproduce both the probability density function of the void formation in bulk and the spectrum of the capillary wave across the fluid interface. More importantly, the CG models accurately predict the volume-to-area scaling transition for the apolar solvation energy, illustrating the effectiveness to probe the meso-scale collective behaviors encoded with molecular-level fidelity.
Collapse
Affiliation(s)
- Pei Ge
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Huan Lei
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
6
|
Tang J, Kobayashi T, Zhang H, Fukuzawa K, Itoh S. Enhancing pressure consistency and transferability of structure-based coarse-graining. Phys Chem Chem Phys 2023; 25:2256-2264. [PMID: 36594875 DOI: 10.1039/d2cp04849c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n-dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position.
Collapse
Affiliation(s)
- Jiahao Tang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Takayuki Kobayashi
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hedong Zhang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Kenji Fukuzawa
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shintaro Itoh
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
7
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
8
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Nkepsu Mbitou RL, Goujon F, Dequidt A, Latour B, Devémy J, Blaak R, Martzel N, Emeriau-Viard C, Tchoufag J, Garruchet S, Munch E, Hauret P, Malfreyt P. Consistent and Transferable Force Fields for Statistical Copolymer Systems at the Mesoscale. J Chem Theory Comput 2022; 18:6940-6951. [PMID: 36205431 DOI: 10.1021/acs.jctc.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The statistical trajectory matching (STM) method was applied successfully to derive coarse grain (CG) models for bulk properties of homopolymers. The extension of the methodology for building CG models for statistical copolymer systems is much more challenging. We present here the strategy for developing CG models for styrene-butadiene-rubber, and we compare the quality of the resulting CG force fields on the structure and thermodynamics at different chemical compositions. The CG models are used through the use of a genuine mesoscopic method called the dissipative particle dynamics method and compared to high-resolution molecular dynamics simulations. We conclude that the STM method is able to produce coarse-grained potentials that are transferable in composition by using only a few reference systems. Additionally, this methodology can be applied on any copolymer system.
Collapse
Affiliation(s)
- R L Nkepsu Mbitou
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France.,Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - F Goujon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - A Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - B Latour
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - R Blaak
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - N Martzel
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - C Emeriau-Viard
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Tchoufag
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - S Garruchet
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - E Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Hauret
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| |
Collapse
|
10
|
Kanekal KH, Rudzinski JF, Bereau T. Broad chemical transferability in structure-based coarse-graining. J Chem Phys 2022; 157:104102. [DOI: 10.1063/5.0104914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7O2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.
Collapse
Affiliation(s)
- Kiran H. Kanekal
- AK Kremer - Theory Group, Max Planck Institute for Polymer Research, Germany
| | | | - Tristan Bereau
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Netherlands
| |
Collapse
|
11
|
DeLyser MR, Noid WG. Coarse-grained models for local density gradients. J Chem Phys 2022; 156:034106. [DOI: 10.1063/5.0075291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Michael R. DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
Yu G, Wilson MR. Molecular simulation studies of self-assembly for a chromonic perylene dye: All-atom studies and new approaches to coarse-graining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
14
|
Potter T, Barrett EL, Miller MA. Automated Coarse-Grained Mapping Algorithm for the Martini Force Field and Benchmarks for Membrane-Water Partitioning. J Chem Theory Comput 2021; 17:5777-5791. [PMID: 34472843 PMCID: PMC8444346 DOI: 10.1021/acs.jctc.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/08/2023]
Abstract
With a view to high-throughput simulations, we present an automated system for mapping and parameterizing organic molecules for use with the coarse-grained Martini force field. The method scales to larger molecules and a broader chemical space than existing schemes. The core of the mapping process is a graph-based analysis of the molecule's bonding network, which has the advantages of being fast, general, and preserving symmetry. The parameterization process pays special attention to coarse-grained beads in aromatic rings. It also includes a method for building efficient and stable frameworks of constraints for molecules with structural rigidity. The performance of the method is tested on a diverse set of 87 neutral organic molecules and the ability of the resulting models to capture octanol-water and membrane-water partition coefficients. In the latter case, we introduce an adaptive method for extracting partition coefficients from free-energy profiles to take into account the interfacial region of the membrane. We also use the models to probe the response of membrane-water partitioning to the cholesterol content of the membrane.
Collapse
Affiliation(s)
- Thomas
D. Potter
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Elin L. Barrett
- Unilever
Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A. Miller
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| |
Collapse
|
15
|
Pretti E, Shell MS. A microcanonical approach to temperature-transferable coarse-grained models using the relative entropy. J Chem Phys 2021; 155:094102. [PMID: 34496595 DOI: 10.1063/5.0057104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bottom-up coarse-graining methods provide systematic tools for creating simplified models of molecular systems. However, coarse-grained (CG) models produced with such methods frequently fail to accurately reproduce all thermodynamic properties of the reference atomistic systems they seek to model and, moreover, can fail in even more significant ways when used at thermodynamic state points different from the reference conditions. These related problems of representability and transferability limit the usefulness of CG models, especially those of strongly state-dependent systems. In this work, we present a new strategy for creating temperature-transferable CG models using a single reference system and temperature. The approach is based on two complementary concepts. First, we switch to a microcanonical basis for formulating CG models, focusing on effective entropy functions rather than energy functions. This allows CG models to naturally represent information about underlying atomistic energy fluctuations, which would otherwise be lost. Such information not only reproduces energy distributions of the reference model but also successfully predicts the correct temperature dependence of the CG interactions, enabling temperature transferability. Second, we show that relative entropy minimization provides a direct and systematic approach to parameterize such classes of temperature-transferable CG models. We calibrate the approach initially using idealized model systems and then demonstrate its ability to create temperature-transferable CG models for several complex molecular liquids.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - M Scott Shell
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| |
Collapse
|
16
|
Wu C, Li K, Ning X, Zhang L. An Enhanced Scheme for Multiscale Modeling of Thermomechanical Properties of Polymer Bulks. J Phys Chem B 2021; 125:8612-8626. [PMID: 34291641 DOI: 10.1021/acs.jpcb.1c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Kewen Li
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Xutao Ning
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| |
Collapse
|
17
|
Berressem F, Scherer C, Andrienko D, Nikoubashman A. Ultra-coarse-graining of homopolymers in inhomogeneous systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:254002. [PMID: 33845463 DOI: 10.1088/1361-648x/abf6e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
We develop coarse-grained (CG) models for simulating homopolymers in inhomogeneous systems, focusing on polymer films and droplets. If the CG polymers interact solely through two-body potentials, then the films and droplets either dissolve or collapse into small aggregates, depending on whether the effective polymer-polymer interactions have been determined from reference simulations in the bulk or at infinite dilution. To address this shortcoming, we include higher order interactions either through an additional three-body potential or a local density-dependent potential (LDP). We parameterize the two- and three-body potentials via force matching, and the LDP through relative entropy minimization. While the CG models with three-body interactions fail at reproducing stable polymer films and droplets, CG simulations with an LDP are able to do so. Minor quantitative differences between the reference and the CG simulations, namely a slight broadening of interfaces accompanied by a smaller surface tension in the CG simulations, can be attributed to the deformation of polymers near the interfaces, which cannot be resolved in the CG representation, where the polymers are mapped to spherical beads.
Collapse
Affiliation(s)
- Fabian Berressem
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Christoph Scherer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
18
|
Rudzinski JF, Kloth S, Wörner S, Pal T, Kremer K, Bereau T, Vogel M. Dynamical properties across different coarse-grained models for ionic liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:224001. [PMID: 33592598 DOI: 10.1088/1361-648x/abe6e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) stand out among molecular liquids for their rich physicochemical characteristics, including structural and dynamic heterogeneity. The significance of electrostatic interactions in RTILs results in long characteristic length- and timescales, and has motivated the development of a number of coarse-grained (CG) simulation models. In this study, we aim to better understand the connection between certain CG parameterization strategies and the dynamical properties and transferability of the resulting models. We systematically compare five CG models: a model largely parameterized from experimental thermodynamic observables; a refinement of this model to increase its structural accuracy; and three models that reproduce a given set of structural distribution functions by construction, with varying intramolecular parameterizations and reference temperatures. All five CG models display limited structural transferability over temperature, and also result in various effective dynamical speedup factors, relative to a reference atomistic model. On the other hand, the structure-based CG models tend to result in more consistent cation-anion relative diffusion than the thermodynamic-based models, for a single thermodynamic state point. By linking short- and long-timescale dynamical behaviors, we demonstrate that the varying dynamical properties of the different CG models can be largely collapsed onto a single curve, which provides evidence for a route to constructing dynamically-consistent CG models of RTILs.
Collapse
Affiliation(s)
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Svenja Wörner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tamisra Pal
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
19
|
Han Y, Jin J, Voth GA. Constructing many-body dissipative particle dynamics models of fluids from bottom-up coarse-graining. J Chem Phys 2021; 154:084122. [PMID: 33639745 DOI: 10.1063/5.0035184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since their emergence in the 1990s, mesoscopic models of fluids have been widely used to study complex organization and transport phenomena beyond the molecular scale. Even though these models are designed based on results from physics at the meso- and macroscale, such as fluid mechanics and statistical field theory, the underlying microscopic foundation of these models is not as well defined. This paper aims to build such a systematic connection using bottom-up coarse-graining methods. From the recently developed dynamic coarse-graining scheme, we introduce a statistical inference framework of explicit many-body conservative interaction that quantitatively recapitulates the mesoscopic structure of the underlying fluid. To further consider the dissipative and fluctuation forces, we design a novel algorithm that parameterizes these forces. By utilizing this algorithm, we derive pairwise decomposable friction kernels under both non-Markovian and Markovian limits where both short- and long-time features of the coarse-grained dynamics are reproduced. Finally, through these new developments, the many-body dissipative particle dynamics type of equations of motion are successfully derived. The methodologies developed in this work thus open a new avenue for the construction of direct bottom-up mesoscopic models that naturally bridge the meso- and macroscopic physics.
Collapse
Affiliation(s)
- Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Bernhardt MP, Hanke M, van der Vegt NFA. Iterative integral equation methods for structural coarse-graining. J Chem Phys 2021; 154:084118. [PMID: 33639741 DOI: 10.1063/5.0038633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, new Newton and Gauss-Newton methods for iterative coarse-graining based on integral equation theory are evaluated and extended. In these methods, the potential update is calculated from the current and target radial distribution function, similar to iterative Boltzmann inversion, but gives a potential update of quality comparable with inverse Monte Carlo. This works well for the coarse-graining of molecules to single beads, which we demonstrate for water. We also extend the methods to systems that include coarse-grained bonded interactions and examine their convergence behavior. Finally, using the Gauss-Newton method with constraints, we derive a model for single bead methanol in implicit water, which matches the osmotic pressure of the atomistic reference. An implementation of all new methods is provided for the open-source VOTCA package.
Collapse
Affiliation(s)
- Marvin P Bernhardt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Martin Hanke
- Institut für Mathematik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Szukalo RJ, Noid WG. Investigating the energetic and entropic components of effective potentials across a glass transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:154004. [PMID: 33498016 DOI: 10.1088/1361-648x/abdff8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
By eliminating unnecessary details, coarse-grained (CG) models provide the necessary efficiency for simulating scales that are inaccessible to higher resolution models. However, because they average over atomic details, the effective potentials governing CG degrees of freedom necessarily incorporate significant entropic contributions, which limit their transferability and complicate the treatment of thermodynamic properties. This work employs a dual-potential approach to consider the energetic and entropic contributions to effective interaction potentials for CG models. Specifically, we consider one- and three-site CG models for ortho-terphenyl (OTP) both above and below its glass transition. We employ the multiscale coarse-graining (MS-CG) variational principle to determine interaction potentials that accurately reproduce the structural properties of an all-atom (AA) model for OTP at each state point. We employ an energy-matching variational principle to determine an energy operator that accurately reproduces the intra- and inter-molecular energy of the AA model. While the MS-CG pair potentials are almost purely repulsive, the corresponding pair energy functions feature a pronounced minima that corresponds to contacting benzene rings. These energetic functions then determine an estimate for the entropic component of the MS-CG interaction potentials. These entropic functions accurately predict the MS-CG pair potentials across a wide range of liquid state points at constant density. Moreover, the entropic functions also predict pair potentials that quite accurately model the AA pair structure below the glass transition. Thus, the dual-potential approach appears a promising approach for modeling AA energetics, as well as for predicting the temperature-dependence of CG effective potentials.
Collapse
Affiliation(s)
- Ryan J Szukalo
- Department of Chemistry, Penn State University, University Park, PA 16802 United States of America
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, PA 16802 United States of America
| |
Collapse
|
22
|
Jin J, Han Y, Pak AJ, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. J Chem Phys 2021; 154:044104. [PMID: 33514116 PMCID: PMC7826168 DOI: 10.1063/5.0026651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Water is undoubtedly one of the most important molecules for a variety of chemical and physical systems, and constructing precise yet effective coarse-grained (CG) water models has been a high priority for computer simulations. To recapitulate important local correlations in the CG water model, explicit higher-order interactions are often included. However, the advantages of coarse-graining may then be offset by the larger computational cost in the model parameterization and simulation execution. To leverage both the computational efficiency of the CG simulation and the inclusion of higher-order interactions, we propose a new statistical mechanical theory that effectively projects many-body interactions onto pairwise basis sets. The many-body projection theory presented in this work shares similar physics from liquid state theory, providing an efficient approach to account for higher-order interactions within the reduced model. We apply this theory to project the widely used Stillinger-Weber three-body interaction onto a pairwise (two-body) interaction for water. Based on the projected interaction with the correct long-range behavior, we denote the new CG water model as the Bottom-Up Many-Body Projected Water (BUMPer) model, where the resultant CG interaction corresponds to a prior model, the iteratively force-matched model. Unlike other pairwise CG models, BUMPer provides high-fidelity recapitulation of pair correlation functions and three-body distributions, as well as N-body correlation functions. BUMPer extensively improves upon the existing bottom-up CG water models by extending the accuracy and applicability of such models while maintaining a reduced computational cost.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Jin J, Pak AJ, Han Y, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). II. Temperature transferability and structural properties at low temperature. J Chem Phys 2021; 154:044105. [PMID: 33514078 PMCID: PMC7826166 DOI: 10.1063/5.0026652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 11/14/2022] Open
Abstract
A number of studies have constructed coarse-grained (CG) models of water to understand its anomalous properties. Most of these properties emerge at low temperatures, and an accurate CG model needs to be applicable to these low-temperature ranges. However, direct use of CG models parameterized from other temperatures, e.g., room temperature, encounters a problem known as transferability, as the CG potential essentially follows the form of the many-body CG free energy function. Therefore, temperature-dependent changes to CG interactions must be accounted for. The collective behavior of water at low temperature is generally a many-body process, which often motivates the use of expensive many-body terms in the CG interactions. To surmount the aforementioned problems, we apply the Bottom-Up Many-Body Projected Water (BUMPer) CG model constructed from Paper I to study the low-temperature behavior of water. We report for the first time that the embedded three-body interaction enables BUMPer, despite its pairwise form, to capture the growth of ice at the ice/water interface with corroborating many-body correlations during the crystal growth. Furthermore, we propose temperature transferable BUMPer models that are indirectly constructed from the free energy decomposition scheme. Changes in CG interactions and corresponding structures are faithfully recapitulated by this framework. We further extend BUMPer to examine its ability to predict the structure, density, and diffusion anomalies by employing an alternative analysis based on structural correlations and pairwise potential forms to predict such anomalies. The presented analysis highlights the existence of these anomalies in the low-temperature regime and overcomes potential transferability problems.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
24
|
DeLyser M, Noid WG. Bottom-up coarse-grained models for external fields and interfaces. J Chem Phys 2020; 153:224103. [PMID: 33317310 DOI: 10.1063/5.0030103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bottom-up coarse-grained (CG) models accurately describe the structure of homogeneous systems but sometimes provide limited transferability and a poor description of thermodynamic properties. Consequently, inhomogeneous systems present a severe challenge for bottom-up models. In this work, we examine bottom-up CG models for interfaces and inhomogeneous systems. We first analyze the effect of external fields upon the many-body potential of mean force. We also demonstrate that the multiscale CG (MS-CG) variational principle for modeling the external field corresponds to a generalization of the first Yvon-Born-Green equation. This provides an important connection with liquid state theory, as well as physical insight into the structure of interfaces and the resulting MS-CG models. We then develop and assess MS-CG models for a film of liquid methanol that is adsorbed on an attractive wall and in coexistence with its vapor phase. While pair-additive potentials provide unsatisfactory accuracy and transferability, the inclusion of local-density (LD) potentials dramatically improves the accuracy and transferability of the MS-CG model. The MS-CG model with LD potentials quite accurately describes the wall-liquid interface, the bulk liquid density, and the liquid-vapor interface while simultaneously providing a much improved description of the vapor phase. This model also provides an excellent description of the pair structure and pressure-density equation of state for the bulk liquid. Thus, LD potentials hold considerable promise for transferable bottom-up models that accurately describe the structure and thermodynamic properties of both bulk and interfacial systems.
Collapse
Affiliation(s)
- Michael DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Rudzinski JF, Bereau T. Coarse-grained conformational surface hopping: Methodology and transferability. J Chem Phys 2020; 153:214110. [DOI: 10.1063/5.0031249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van ’t Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
26
|
Potter TD, Walker M, Wilson MR. Self-assembly and mesophase formation in a non-ionic chromonic liquid crystal: insights from bottom-up and top-down coarse-grained simulation models. SOFT MATTER 2020; 16:9488-9498. [PMID: 32955531 DOI: 10.1039/d0sm01157f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New coarse-grained models are introduced for a non-ionic chromonic molecule, TP6EO2M, in aqueous solution. The multiscale coarse-graining (MS-CG) approach is used, in the form of hybrid force matching (HFM), to produce a bottom-up CG model that demonstrates self-assembly in water and the formation of a chromonic stack. However, the high strength of binding in stacks is found to limit the transferability of the HFM model at higher concentrations. The MARTINI 3 framework is also tested. Here, a top-down CG model is produced which shows self-assembly in solution in good agreement with atomistic studies and transfers well to higher concentrations, allowing the full phase diagram of TP6EO2M to be studied. At high concentration, both self-assembly of molecules into chromonic stacks and self-organisation of stacks into mesophases occurs, with the formation of nematic (N) and hexagonal (M) chromonic phases. This CG-framework is suggested as a suitable way of studying a range of chromonic-type drug and dye molecules that exhibit complex self-assembly and solubility behaviour in solution.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Martin Walker
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Mark R Wilson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
27
|
Shen K, Sherck N, Nguyen M, Yoo B, Köhler S, Speros J, Delaney KT, Fredrickson GH, Shell MS. Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information. J Chem Phys 2020; 153:154116. [DOI: 10.1063/5.0022808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, USA
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Materials Engineering, University of California, Santa Barbara, California 93106, USA
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
28
|
Jin J, Yu A, Voth GA. Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J Chem Theory Comput 2020; 16:6823-6842. [PMID: 32975948 DOI: 10.1021/acs.jctc.0c00832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the high fidelity of bottom-up coarse-grained (CG) approaches to recapitulate the structural correlations in atomistic simulations, the general use of bottom-up CG methods is limited because of the nontransferable nature of these CG models under different thermodynamic conditions. Because bottom-up CG potentials usually correspond to configuration-dependent free energies of the system, recent studies have focused on adjusting enthalpic or entropic contributions to account for issues with transferability. However, these approaches can require a manual adjustment of the CG interaction a priori and are usually limited to constant volume ensembles. To overcome these limitations, we construct temperature and phase transferable CG models under constant pressure by developing the ultra-coarse-graining (UCG) methodology in the mean-field limit. In the mean-field ansatz, an embedded semi-global order parameter recapitulates global changes to the system by automatically adjusting the effective CG interactions, thus bridging free energy decompositions with UCG theory. The method presented is designed to faithfully capture structural correlations under different thermodynamic conditions, using a single UCG model. Specifically, we test the applicability of the developed theory in three distinct cases: (1) different temperatures at constant pressure in liquids, (2) different temperatures across thermodynamic phases, and (3) liquid/vapor interfaces. We demonstrate that the systematic construction of both temperature and phase transferable bottom-up CG models is possible using this generalized UCG theory. Based on our findings, this approach significantly extends the transferability and applicability of the bottom-up CG theory and method.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
Shahidi N, Chazirakis A, Harmandaris V, Doxastakis M. Coarse-graining of polyisoprene melts using inverse Monte Carlo and local density potentials. J Chem Phys 2020; 152:124902. [PMID: 32241142 DOI: 10.1063/1.5143245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bottom-up coarse-graining of polymers is commonly performed by matching structural order parameters such as distribution of bond lengths, bending and dihedral angles, and pair distribution functions. In this study, we introduce the distribution of nearest-neighbors as an additional order parameter in the concept of local density potentials. We describe how the inverse-Monte Carlo method provides a framework for forcefield development that is capable of overcoming challenges associated with the parameterization of interaction terms in polymer systems. The technique is applied on polyisoprene melts as a prototype system. We demonstrate that while different forcefields can be developed that perform equally in terms of matching target distributions, the inclusion of nearest-neighbors provides a straightforward route to match both thermodynamic and conformational properties. We find that several temperature state points can also be addressed, provided that the forcefield is refined accordingly. Finally, we examine both the single-particle and the collective dynamics of the coarse-grain models, demonstrating that all forcefields present a similar acceleration relative to the atomistic systems.
Collapse
Affiliation(s)
- Nobahar Shahidi
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Antonis Chazirakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
30
|
Abstract
Low resolution coarse-grained (CG) models are widely adopted for investigating phenomena that cannot be effectively simulated with all-atom (AA) models. Since the development of the many-body dissipative particle dynamics method, CG models have increasingly supplemented conventional pair potentials with one-body potentials of the local density (LD) around each site. These LD potentials appear to significantly extend the transferability of CG models, while also enabling more accurate descriptions of thermodynamic properties, interfacial phenomena, and many-body correlations. In this work, we systematically examine the properties of LD potentials. We first derive and numerically demonstrate a nontrivial transformation of pair and LD potentials that leaves the total forces and equilibrium distribution invariant. Consequently, the pair and LD potentials determined via bottom-up methods are not unique. We then investigate the sensitivity of CG models for glycerol to the weighting function employed for defining the local density. We employ the multiscale coarse-graining (MS-CG) method to simultaneously parameterize both pair and LD potentials. When employing a short-ranged Lucy function that defines the local density from the first solvation shell, the MS-CG model accurately reproduces the pair structure, pressure-density equation of state, and liquid-vapor interfacial profile of the AA model. The accuracy of the model generally decreases as the range of the Lucy function increases further. The MS-CG model provides similar accuracy when a smoothed Heaviside function is employed to define the local density from the first solvation shell. However, the model performs less well when this function acts on either longer or shorter length scales.
Collapse
Affiliation(s)
- Michael R DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
31
|
Lebold KM, Noid WG. Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability. J Chem Phys 2019; 151:164113. [PMID: 31675902 DOI: 10.1063/1.5125246] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dual-potential approach promises coarse-grained (CG) models that accurately reproduce both structural and energetic properties, while simultaneously providing predictive estimates for the temperature-dependence of the effective CG potentials. In this work, we examine the dual-potential approach for implicit solvent CG models that reflect large entropic effects from the eliminated solvent. Specifically, we construct implicit solvent models at various resolutions, R, by retaining a fraction 0.10 ≤ R ≤ 0.95 of the molecules from a simple fluid of Lennard-Jones spheres. We consider the dual-potential approach in both the constant volume and constant pressure ensembles across a relatively wide range of temperatures. We approximate the many-body potential of mean force for the remaining solutes with pair and volume potentials, which we determine via multiscale coarse-graining and self-consistent pressure-matching, respectively. Interestingly, with increasing temperature, the pair potentials appear increasingly attractive, while the volume potentials become increasingly repulsive. The dual-potential approach not only reproduces the atomic energetics but also quite accurately predicts this temperature-dependence. We also derive an exact relationship between the thermodynamic specific heat of an atomic model and the energetic fluctuations that are observable at the CG resolution. With this generalized fluctuation relationship, the approximate CG models quite accurately reproduce the thermodynamic specific heat of the underlying atomic model.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
32
|
Duan K, Li L, Wang F, Meng W, Hu Y, Wang X. Importance of Interface in the Coarse-Grained Model of CNT /Epoxy Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1479. [PMID: 31627426 PMCID: PMC6835526 DOI: 10.3390/nano9101479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/23/2022]
Abstract
Interface interactions play a crucial role in determining the thermomechanical properties of carbon nanotubes (CNTs)/polymer nanocomposites. They are, however, poorly treated in the current multi-scale coarse-grained (CG) models. To develop suitable CG models of CNTs/polymer nanocomposites, we demonstrate the importance of two aspects for the first time, that is, preserving the interfacial cohesive energy and reproducing the interface load transfer behavior of all-atomistic (AA) systems. Our simulation results indicate that, for CNTs/polymer nanocomposites, the interface cohesive energy and the interface load transfer of CG models are generally inconsistent with their AA counterparts, revealing significant deviations in their predicted mechanical properties. Fortunately, such inconsistency can be "corrected" by phenomenologically adjusting the cohesive interaction strength parameter of the interface LJ potentials in conjunction with choosing a reasonable degree of coarse-graining of incorporated CNTs. We believe that the problem studied here is general for the development of the CG models of nanocomposites, and the proposed strategy used in present work may be applied to polymer nanocomposites reinforced by other nanofillers.
Collapse
Affiliation(s)
- Ke Duan
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Li Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Fei Wang
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Weishuang Meng
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yujin Hu
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xuelin Wang
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
33
|
Rosenberger D, van der Vegt NFA. Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures. Phys Rev E 2019; 99:053308. [PMID: 31212527 DOI: 10.1103/physreve.99.053308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Many methodological approaches have been proposed to improve systematic or bottom-up coarse-graining techniques to enhance the representability and transferability of the derived interaction potentials. Transferability describes the ability of a coarse-grained (CG) model to be predictive, i.e., to describe a system at state points different from those chosen for parametrization. Whereas the representability characterizes the accuracy of a CG model to reproduce target properties of the underlying reference or fine-grained model at a given state point. In this article, we shift the focus away from methodological aspects and rather raise the question whether we can overcome the disadvantages of a given method in terms of representability and transferability by systematically selecting the state point at which the CG model gets parametrized. We answer this question by applying the inverse Monte Carlo (IMC) approach-a structure-based coarse-graining method-to derive effective interactions for binary mixtures of simple Lennard-Jones (LJ) particles, which are different in size. For such simple systems we indeed can identify a concentration where the derived potentials show the best performance in terms of structural representability and transferability. This specific concentration is identified by computing the relative entropy which quantifies the information loss between different IMC models and the reference LJ model at varying mixture compositions. Further, we show that an IMC model for mixtures of n-hexane and n-perfluorohexane shows the same trend in transferability as the IMC models for the LJ system. All derived models are more transferable in the direction of increasing concentration of the larger-sized compound.
Collapse
Affiliation(s)
- David Rosenberger
- Eduard Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Nico F A van der Vegt
- Eduard Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| |
Collapse
|
34
|
Rosenberger D, Sanyal T, Shell MS, van der Vegt NFA. Transferability of Local Density-Assisted Implicit Solvation Models for Homogeneous Fluid Mixtures. J Chem Theory Comput 2019; 15:2881-2895. [PMID: 30995034 DOI: 10.1021/acs.jctc.8b01170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of bottom-up coarse grained (CG) models to study the equilibrium mixing behavior of liquids is rather challenging, since these models can be significantly influenced by the density or the concentration of the state chosen during parametrization. This dependency leads to low transferability in density/concentration space and has been one of the major limitations in bottom-up coarse graining. Recent approaches proposed to tackle this shortcoming range from the addition of thermodynamic constraints, to an extended ensemble parametrization, to the addition of supplementary terms to the system's Hamiltonian. To study fluid phase equilibria with bottom-up CG models, the application of local density (LD) potentials appears to be a promising approach, as shown in previous work by Sanyal and Shell [T. Sanyal, M. S. Shell, J. Phys. Chem. B, 2018, 122, 5678]. Here, we want to further explore this method and test its ability to model a system which contains structural inhomogeneities only on the molecular scale, namely, solutions of methanol and water. We find that a water-water LD potential improves the transferability of an implicit-methanol CG model toward high water concentration. Conversely, a methanol-methanol LD potential does not significantly improve the transferability of an implicit-water CG model toward high methanol concentration. These differences appear due to the presence of cooperative interactions in water at high concentrations that the LD potentials can capture. In addition, we compare two different approaches to derive our CG models, namely, relative entropy optimization and the Inverse Monte Carlo method, and formally demonstrate under which analytical and numerical assumptions these two methods yield equivalent results.
Collapse
Affiliation(s)
- David Rosenberger
- Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany
| | - Tanmoy Sanyal
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - M Scott Shell
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Nico F A van der Vegt
- Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
35
|
Kempfer K, Devémy J, Dequidt A, Couty M, Malfreyt P. Development of Coarse-Grained Models for Polymers by Trajectory Matching. ACS OMEGA 2019; 4:5955-5967. [PMID: 31459746 PMCID: PMC6648800 DOI: 10.1021/acsomega.9b00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 05/21/2023]
Abstract
Coarse-grained (CG) models allow for simulating the necessary time and length scales relevant to polymers. However, developing realistic force fields at the CG level is still a challenge because there is no guarantee that the CG model reproduces all the properties of the atomistic model. A recent promising method was proposed for small molecules using statistical trajectory matching. Here, we extend this method to the case of polymeric systems. As the quality of the final model crucially depends on the model design, we study and discuss the effect of the modeling choices on the structure and dynamics of bulk polymers before a quantitative comparison is made between CG methods on different properties and polymers.
Collapse
Affiliation(s)
- Kévin Kempfer
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- Manufacture
Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Julien Devémy
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- E-mail: (A.D.)
| | - Marc Couty
- Manufacture
Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- E-mail: (P.M.)
| |
Collapse
|
36
|
Pak A, Dannenhoffer-Lafage T, Madsen JJ, Voth GA. Systematic Coarse-Grained Lipid Force Fields with Semiexplicit Solvation via Virtual Sites. J Chem Theory Comput 2019; 15:2087-2100. [PMID: 30702887 PMCID: PMC6416712 DOI: 10.1021/acs.jctc.8b01033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 12/15/2022]
Abstract
Despite the central role of lipids in many biophysical functions, the molecular mechanisms that dictate macroscopic lipid behavior remain elusive to both experimental and computational approaches. As such, there has been much interest in the development of low-resolution, implicit-solvent coarse-grained (CG) models to dynamically simulate biologically relevant spatiotemporal scales with molecular fidelity. However, in the absence of solvent, a key challenge for CG models is to faithfully emulate solvent-mediated forces, which include both hydrophilic and hydrophobic interactions that drive lipid aggregation and self-assembly. In this work, we provide a new methodological framework to incorporate semiexplicit solvent effects through the use of virtual CG particles, which represent structural features of the solvent-lipid interface. To do so, we leverage two systematic coarse-graining approaches, multiscale coarse-graining (MS-CG) and relative entropy minimization (REM), in a hybrid fashion to construct our virtual-site CG (VCG) models. As a proof-of-concept, we focus our efforts on two lipid species, 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), which adopt a liquid-disordered and gel phase, respectively, at room temperature. Through our analysis, we also present, to our knowledge, the first direct comparison between the MS-CG and REM methods for a complex biomolecule and highlight each of their strengths and weaknesses. We further demonstrate that VCG models recapitulate the rich biophysics of lipids, which enable self-assembly, morphological diversity, and multiple phases. Our findings suggest that the VCG framework is a powerful approach for investigation into macromolecular biophysics.
Collapse
Affiliation(s)
- Alexander
J. Pak
- Department of Chemistry, The
University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jesper J. Madsen
- Department of Chemistry, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models with Explicit Electrostatics—An Application to Butylmethylimidazolium Ionic Liquids. J Chem Theory Comput 2019; 15:1187-1198. [DOI: 10.1021/acs.jctc.8b00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
38
|
Lebold KM, Noid WG. Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids. J Chem Phys 2019; 150:014104. [DOI: 10.1063/1.5050509] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Kathryn M. Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
39
|
Potter TD, Tasche J, Wilson MR. Assessing the transferability of common top-down and bottom-up coarse-grained molecular models for molecular mixtures. Phys Chem Chem Phys 2019; 21:1912-1927. [DOI: 10.1039/c8cp05889j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessing the performance of top-down and bottom-up coarse-graining approaches.
Collapse
Affiliation(s)
| | - Jos Tasche
- Department of Chemistry
- Durham University
- Lower Mountjoy
- Durham
- UK
| | - Mark R. Wilson
- Department of Chemistry
- Durham University
- Lower Mountjoy
- Durham
- UK
| |
Collapse
|
40
|
Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 2018; 52:119-126. [PMID: 30508766 DOI: 10.1016/j.sbi.2018.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023]
Abstract
Recent progress in coarse-grained (CG) molecular modeling and simulation has facilitated an influx of computational studies on biological macromolecules and their complexes. Given the large separation of length-scales and time-scales that dictate macromolecular biophysics, CG modeling and simulation are well-suited to bridge the microscopic and mesoscopic or macroscopic details observed from all-atom molecular simulations and experiments, respectively. In this review, we first summarize recent innovations in the development of CG models, which broadly include structure-based, knowledge-based, and dynamics-based approaches. We then discuss recent applications of different classes of CG models to explore various macromolecular complexes. Finally, we conclude with an outlook for the future in this ever-growing field of biomolecular modeling.
Collapse
|
41
|
Scherer C, Andrienko D. Understanding three-body contributions to coarse-grained force fields. Phys Chem Chem Phys 2018; 20:22387-22394. [PMID: 30129962 DOI: 10.1039/c8cp00746b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-graining is a systematic reduction of the number of degrees of freedom used to describe a system of interest. Coarse-graining can be thought of as a projection on the coarse-grained degrees of freedom and is therefore dependent on the number and type of basis functions used to represent the coarse-grained force field. We show that many-body extensions of the coarse-grained force field can result in substantial changes of the two-body interactions, making them much more attractive at short distances. This interplay can be alleviated by first parametrizing the two-body potential and then fitting the additional three-body contribution to the residual forces. The approach is illustrated on liquid water where three-body interactions are essential to reproduce the structural properties, and liquid methanol where two-body interactions are sufficient to reproduce the main structural features of the atomistic system. Furthermore, we demonstrate that the structural and thermodynamic accuracy of the coarse-grained models can be controlled by varying the magnitude of the three-body interactions. Our findings motivate basis set extensions which separate the many-body contributions of different order.
Collapse
Affiliation(s)
- Christoph Scherer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
42
|
Zhang L, Han J, Wang H, Car R, E W. DeePCG: Constructing coarse-grained models via deep neural networks. J Chem Phys 2018; 149:034101. [PMID: 30037247 DOI: 10.1063/1.5027645] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a general framework for constructing coarse-grained potential models without ad hoc approximations such as limiting the potential to two- and/or three-body contributions. The scheme, called the Deep Coarse-Grained Potential (abbreviated DeePCG), exploits a carefully crafted neural network to construct a many-body coarse-grained potential. The network is trained with full atomistic data in a way that preserves the natural symmetries of the system. The resulting model is very accurate and can be used to sample the configurations of the coarse-grained variables in a much faster way than with the original atomistic model. As an application, we consider liquid water and use the oxygen coordinates as the coarse-grained variables, starting from a full atomistic simulation of this system at the ab initio molecular dynamics level. We find that the two-body, three-body, and higher-order oxygen correlation functions produced by the coarse-grained and full atomistic models agree very well with each other, illustrating the effectiveness of the DeePCG model on a rather challenging task.
Collapse
Affiliation(s)
- Linfeng Zhang
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jiequn Han
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Han Wang
- Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People's Republic of China and CAEP Software Center for High Performance Numerical Simulation, Huayuan Road 6, Beijing 100088, People's Republic of China
| | - Roberto Car
- Department of Chemistry, Department of Physics, Program in Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Weinan E
- Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA and Beijing Institute of Big Data Research, Beijing 100871, People's Republic of China
| |
Collapse
|
43
|
Pazzona FG, Pireddu G, Gabrieli A, Pintus AM, Demontis P. Local free energies for the coarse-graining of adsorption phenomena: The interacting pair approximation. J Chem Phys 2018; 148:194108. [PMID: 30307206 DOI: 10.1063/1.5022860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.
Collapse
Affiliation(s)
- Federico G Pazzona
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 01700 Sassari, Italy
| | - Giovanni Pireddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 01700 Sassari, Italy
| | - Andrea Gabrieli
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 01700 Sassari, Italy
| | - Alberto M Pintus
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 01700 Sassari, Italy
| | - Pierfranco Demontis
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 01700 Sassari, Italy
| |
Collapse
|
44
|
Langenberg M, Jackson NE, de Pablo JJ, Müller M. Role of translational entropy in spatially inhomogeneous, coarse-grained models. J Chem Phys 2018. [DOI: 10.1063/1.5018178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marcel Langenberg
- Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany
| | - Nicholas E. Jackson
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60615, USA
- Argonne National Laboratory, Lemont, Illinois 06349, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60615, USA
- Argonne National Laboratory, Lemont, Illinois 06349, USA
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Sanyal T, Shell MS. Transferable Coarse-Grained Models of Liquid-Liquid Equilibrium Using Local Density Potentials Optimized with the Relative Entropy. J Phys Chem B 2018; 122:5678-5693. [PMID: 29466859 DOI: 10.1021/acs.jpcb.7b12446] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up coarse-grained (CG) models are now regularly pursued to enable large length and time scale molecular simulations of complex, often macromolecular systems. However, predicting fluid phase equilibria using such models remains fundamentally challenging. A major problem stems from the typically low transferability of CG models beyond the densities and/or compositions at which they are parametrized, which is necessary if they are to describe distinct structural and thermodynamic properties unique to each phase. CG model transferability is compounded by the representation of the inherently multibody coarse interactions using pair potentials that neglect higher order effects. Here, we propose to construct transferable single site CG models of liquid mixtures by supplementing traditional CG pair interactions with local density potentials, which constitute a computationally inexpensive mean-field approach to describe many-body effects, in that site energies are modulated by the local solution environment. To illustrate the approach, we use intra- and interspecies local density potentials to develop CG models of benzene-water solutions that show impressive transferability in structural metrics (pair correlation functions, density profiles) throughout composition space, in contrast to pair-only CG representations. While further refinement may be necessary to represent more complex thermodynamic properties, like the liquid-liquid interfacial tension, the generality and improvement offered by the local density approach are highly encouraging for enabling complex phase equilibrium modeling using CG models.
Collapse
Affiliation(s)
- Tanmoy Sanyal
- Department of Chemical Engineering , University of California, Santa Barbara , Santa Barbara , California , United States
| | - M Scott Shell
- Department of Chemical Engineering , University of California, Santa Barbara , Santa Barbara , California , United States
| |
Collapse
|
46
|
Rosenberger D, van der Vegt NFA. Addressing the temperature transferability of structure based coarse graining models. Phys Chem Chem Phys 2018; 20:6617-6628. [DOI: 10.1039/c7cp08246k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a novel idea to improve the temperature transferability of structure based coarse graining models.
Collapse
Affiliation(s)
- David Rosenberger
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Darmstadt
- Germany
| | - Nico F. A. van der Vegt
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Darmstadt
- Germany
| |
Collapse
|
47
|
Dunn NJH, Lebold KM, DeLyser MR, Rudzinski JF, Noid W. BOCS: Bottom-up Open-source Coarse-graining Software. J Phys Chem B 2017; 122:3363-3377. [DOI: 10.1021/acs.jpcb.7b09993] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kathryn M. Lebold
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael R. DeLyser
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph F. Rudzinski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - W.G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|