1
|
Mukherjee S, Lassmann Y, Mattos RS, Demoulin B, Curchod BFE, Barbatti M. Assessing Nonadiabatic Dynamics Methods in Long Timescales. J Chem Theory Comput 2025; 21:29-37. [PMID: 39680061 DOI: 10.1021/acs.jctc.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Nonadiabatic dynamics simulations complement time-resolved experiments by revealing ultrafast excited-state mechanistic information in photochemical reactions. Understanding the relaxation mechanisms of photoexcited molecules finds application in energy, material, and medicinal research. However, with substantial computational costs, the nonadiabatic dynamics simulations have been restricted to ultrafast timescales, typically less than a few picoseconds, thus neglecting a wide range of photoactivated processes occurring in much longer timescales. Before developing new methodologies, we must ask: How well do the popular nonadiabatic dynamics methods perform in a long timescale simulation? In this study, we employ the multiconfiguration time-dependent Hartree (MCTDH) and its multilayer variants (ML-MCTDH), ab initio multiple spawning (AIMS), and fewest-switches surface hopping (FSSH) methodologies to simulate the excited-states dynamics of a weakly coupled multidimensional Spin-Boson model Hamiltonian designed for a long timescale decay behavior. Our study assures that despite having very different theoretical backgrounds, all the above methods deliver qualitatively similar results. While quantum dynamics would be very costly for long timescale simulations, the trajectory-based approaches are paving the way for future advancements.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, Toruń 87100, Poland
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Yorick Lassmann
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Baptiste Demoulin
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- CINaM UMR 7325, CNRS, Marseille 13288, France
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
2
|
Akimov AV. State Tracking in Nonadiabatic Molecular Dynamics Using Only Forces and Energies. J Phys Chem Lett 2024; 15:11944-11953. [PMID: 39575875 DOI: 10.1021/acs.jpclett.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
A new algorithm for the identification of unavoided (trivial) crossings in nonadiabatic molecular dynamics calculations is reported. The approach does not require knowledge of wave functions or wave function time overlaps and uses only information on state energies and gradients. In addition, a simple phase consistency correction algorithm for time-derivative nonadiabatic couplings is proposed for situations in which wave function time overlaps are not available. The performance of the two algorithms is demonstrated using several state crossing models. The approaches work best for systems with localized nonadiabatic coupling regions but may have difficulties for those with extended regions of nonadiabatic coupling. It is found that state tracking alone is not sufficient for producing correct population dynamics and that nonadiabatic coupling phase correction is required.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Myers CA, Miyazaki K, Trepl T, Isborn CM, Ananth N. GPU-accelerated on-the-fly nonadiabatic semiclassical dynamics. J Chem Phys 2024; 161:084114. [PMID: 39193942 DOI: 10.1063/5.0223628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
GPU-accelerated on-the-fly nonadiabatic dynamics is enabled by interfacing the linearized semiclassical dynamics approach with the TeraChem electronic structure program. We describe the computational workflow of the "PySCES" code interface, a Python code for semiclassical dynamics with on-the-fly electronic structure, including parallelization over multiple GPU nodes. We showcase the abilities of this code and present timings for two benchmark systems: fulvene solvated in acetonitrile and a charge transfer system in which a photoexcited zinc-phthalocyanine donor transfers charge to a fullerene acceptor through multiple electronic states on an ultrafast timescale. Our implementation paves the way for an efficient semiclassical approach to model the nonadiabatic excited state dynamics of complex molecules, materials, and condensed phase systems.
Collapse
Affiliation(s)
- Christopher A Myers
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Ken Miyazaki
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Thomas Trepl
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
4
|
De PK, Jain A. Exciton energy transfer inside cavity-A benchmark study of polaritonic dynamics using the surface hopping method. J Chem Phys 2024; 161:054117. [PMID: 39105549 DOI: 10.1063/5.0216787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system's dynamics.
Collapse
Affiliation(s)
- Priyam Kumar De
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| |
Collapse
|
5
|
Krotz A, Tempelaar R. Mixed quantum-classical modeling of exciton-phonon scattering in solids: Application to optical linewidths of monolayer MoS2. J Chem Phys 2024; 161:044117. [PMID: 39072420 DOI: 10.1063/5.0218973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
We present a mixed quantum-classical framework for the microscopic and non-Markovian modeling of exciton-phonon scattering in solid-state materials and apply it to calculate the optical linewidths of monolayer MoS2. Within this framework, we combine reciprocal-space mixed quantum-classical dynamics with models for the quasiparticle band structure as well as the electron-hole and carrier-phonon interactions, parametrized against ab initio calculations, although noting that a direct interfacing with ab initio calculations is straightforward in principle. We introduce various parameters for truncating the Brillouin zone to select regions of interest. Variations of these parameters allow us to determine linewidths in the limit of asymptotic material sizes. The obtained asymptotic linewidths are found to agree favorably with experimental measurements across a range of temperatures. As such, our framework establishes itself as a promising route toward unraveling the non-Markovian and microscopic principles governing the nonadiabatic dynamics of solids.
Collapse
Affiliation(s)
- Alex Krotz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Miyazaki K, Krotz A, Tempelaar R. Mixed Quantum-Classical Dynamics under Arbitrary Unitary Basis Transformations. J Chem Theory Comput 2024. [PMID: 39033401 DOI: 10.1021/acs.jctc.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A common approach to minimizing the cost of quantum computations is by unitarily transforming a quantum system into a basis that can be optimally truncated. Here, we derive classical equations of motion subjected to similar unitary transformations and propose their integration into mixed quantum-classical dynamics, allowing this class of methods to be applied within arbitrary bases for both the quantum and classical coordinates. To this end, canonical positions and momenta of the classical degrees of freedom are combined into a set of complex-valued coordinates amenable to unitary transformations. We demonstrate the potential of the resulting approach by means of surface hopping calculations of an electronic carrier scattering onto a single impurity in the presence of phonons. Appropriate basis transformations, capturing both the localization of the impurity and the delocalization of higher-energy excitations, are shown to faithfully capture the dynamics within a fraction of the classical and quantum basis sets.
Collapse
Affiliation(s)
- Ken Miyazaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alex Krotz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Xu J, Shi Z, Wang L. Consistent Construction of the Density Matrix from Surface Hopping Trajectories. J Chem Theory Comput 2024; 20:2349-2361. [PMID: 38490993 DOI: 10.1021/acs.jctc.4c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Proper construction of the density matrix based on surface hopping trajectories remains a difficult problem. Due to the well-known overcoherence in traditional surface hopping simulations, the electronic wave function cannot be used directly. In this work, we propose a consistent density matrix construction method, which takes the advantage of occupation of active states to rescale the coherence calculated by wave functions and ensures the intrinsic consistency of the density matrix. This new trajectory analysis method can be used for both Tully's fewest switches surface hopping (FSSH) and our recently proposed branching corrected surface hopping (BCSH). As benchmarked in both one- and two-dimensional standard scattering models, the new approach combined with BCSH trajectories achieves highly accurate time-dependent spatial distributions of adiabatic populations and coherence compared to exact quantum results.
Collapse
Affiliation(s)
- Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Bondarenko AS, Tempelaar R. Overcoming positivity violations for density matrices in surface hopping. J Chem Phys 2023; 158:054117. [PMID: 36754802 DOI: 10.1063/5.0135456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fewest-switches surface hopping (FSSH) has emerged as one of the leading methods for modeling the quantum dynamics of molecular systems. While its original formulation was limited to adiabatic populations, the growing interest in the application of FSSH to coherent phenomena prompts the question of how one should construct a complete density matrix based on FSSH trajectories. A straightforward solution is to define adiabatic coherences based on wavefunction coefficients. In this paper, we demonstrate that inconsistencies introduced in the density matrix through such treatment may lead to a violation of positivity. We furthermore show that a recently proposed coherent generalization of FSSH results in density matrices that satisfy positivity while yielding improved accuracy throughout much (but not all) of parameter space.
Collapse
Affiliation(s)
- Anna S Bondarenko
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
9
|
Chandran SS, Wu Y, Subotnik JE. Effect of Duschinskii Rotations on Spin-Dependent Electron Transfer Dynamics. J Phys Chem A 2022; 126:9535-9552. [DOI: 10.1021/acs.jpca.2c06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Suraj S. Chandran
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Mukherjee S, Pinheiro M, Demoulin B, Barbatti M. Simulations of molecular photodynamics in long timescales. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200382. [PMID: 35341303 PMCID: PMC8958277 DOI: 10.1098/rsta.2020.0382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 05/04/2023]
Abstract
Nonadiabatic dynamics simulations in the long timescale (much longer than 10 ps) are the next challenge in computational photochemistry. This paper delimits the scope of what we expect from methods to run such simulations: they should work in full nuclear dimensionality, be general enough to tackle any type of molecule and not require unrealistic computational resources. We examine the main methodological challenges we should venture to advance the field, including the computational costs of the electronic structure calculations, stability of the integration methods, accuracy of the nonadiabatic dynamics algorithms and software optimization. Based on simulations designed to shed light on each of these issues, we show how machine learning may be a crucial element for long time-scale dynamics, either as a surrogate for electronic structure calculations or aiding the parameterization of model Hamiltonians. We show that conventional methods for integrating classical equations should be adequate to extended simulations up to 1 ns and that surface hopping agrees semiquantitatively with wave packet propagation in the weak-coupling regime. We also describe our optimization of the Newton-X program to reduce computational overheads in data processing and storage. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
| | - Max Pinheiro
- Aix Marseille University, CNRS, ICR, Marseille, France
| | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
11
|
Abstract
Surface hopping has seen great success in describing molecular phenomena where electronic excitations tend to be localized, but its application to materials with band-like electronic properties has remained limited. Here, we derive a formulation of fewest-switches surface hopping where both the quantum and classical equations of motion are solved entirely in terms of reciprocal-space coordinates. The resulting method is directly compatible with band structure calculations and allows for the efficient description of band-like phenomena by means of a truncation of the Brillouin zone. Using the Holstein and Peierls models as examples, we demonstrate the formal equivalence between real-space and reciprocal-space surface hopping and assess their accuracy against mean-field mixed quantum-classical dynamics and numerically exact results. Having very similar equations of motion, reciprocal-space surface hopping can be straightforwardly incorporated in existing (real-space) surface hopping implementations.
Collapse
Affiliation(s)
- Alex Krotz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
12
|
Parker SM, Schiltz CJ. Surface hopping with cumulative probabilities: Even sampling and improved reproducibility. J Chem Phys 2020; 153:174109. [DOI: 10.1063/5.0024372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Shane M. Parker
- Department of Chemistry, Case Western Reserve University, 10800 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Colin J. Schiltz
- Department of Chemistry, Case Western Reserve University, 10800 Euclid Ave., Cleveland, Ohio 44106, USA
| |
Collapse
|
13
|
Segatta F, Cupellini L, Garavelli M, Mennucci B. Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems. Chem Rev 2019; 119:9361-9380. [PMID: 31276384 PMCID: PMC6716121 DOI: 10.1021/acs.chemrev.9b00135] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 01/21/2023]
Abstract
Multichromophoric biosystems represent a broad family with very diverse members, ranging from light-harvesting pigment-protein complexes to nucleic acids. The former are designed to capture, harvest, efficiently transport, and transform energy from sunlight for photosynthesis, while the latter should dissipate the absorbed radiation as quickly as possible to prevent photodamages and corruption of the carried genetic information. Because of the unique electronic and structural characteristics, the modeling of their photoinduced activity is a real challenge. Numerous approaches have been devised building on the theoretical development achieved for single chromophores and on model Hamiltonians that capture the essential features of the system. Still, a question remains: is a general strategy for the accurate modeling of multichromophoric systems possible? By using a quantum chemical point of view, here we review the advancements developed so far highlighting differences and similarities with the single chromophore treatment. Finally, we outline the important limitations and challenges that still need to be tackled to reach a complete and accurate picture of their photoinduced properties and dynamics.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
14
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
15
|
Peng J, Xie Y, Hu D, Lan Z. Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics. J Chem Phys 2019; 150:164126. [PMID: 31042919 DOI: 10.1063/1.5079426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce a good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. It improves the result accuracy in many cases, while its influence may also be minor for other cases.
Collapse
Affiliation(s)
- Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
16
|
Jain A, Petit AS, Anna JM, Subotnik JE. Simple and Efficient Theoretical Approach To Compute 2D Optical Spectra. J Phys Chem B 2019; 123:1602-1617. [DOI: 10.1021/acs.jpcb.8b08674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92834, United States
| | - Jessica M. Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Chen HT, Li TE, Sukharev M, Nitzan A, Subotnik JE. Ehrenfest+R dynamics. I. A mixed quantum-classical electrodynamics simulation of spontaneous emission. J Chem Phys 2019; 150:044102. [PMID: 30709254 DOI: 10.1063/1.5057365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of an electronic system interacting with an electromagnetic field is investigated within mixed quantum-classical theory. Beyond the classical path approximation (where we ignore all feedback from the electronic system on the photon field), we consider all electron-photon interactions explicitly according to Ehrenfest (i.e., mean-field) dynamics and a set of coupled Maxwell-Liouville equations. Because Ehrenfest dynamics cannot capture certain quantum features of the photon field correctly, we propose a new Ehrenfest+R method that can recover (by construction) spontaneous emission while also distinguishing between electromagnetic fluctuations and coherent emission.
Collapse
Affiliation(s)
- Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maxim Sukharev
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
18
|
Jansen TLC. Simple Quantum Dynamics with Thermalization. J Phys Chem A 2018; 122:172-183. [PMID: 29199829 PMCID: PMC5770886 DOI: 10.1021/acs.jpca.7b10380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/04/2017] [Indexed: 02/05/2023]
Abstract
In this paper, we introduce two simple quantum dynamics methods. One is based on the popular surface-hopping method, and the other is based on rescaling of the propagation on the bath ground-state potential surface. The first method is special, as it avoids specific feedback from the simulated quantum system to the bath and can be applied for precalculated classical trajectories. It is based on the equipartition theorem to determine if hops between different potential energy surfaces are allowed. By comparing with the formally exact Hierarchical Equations Of Motion approach for four model systems we find that the method generally approximates the quantum dynamics toward thermal equilibrium very well. The second method is based on rescaling of the nonadiabatic coupling and also neglect the effect of the state of the quantum system on the bath. By the nature of the approximations, they cannot reproduce the effect of bath relaxation following excitation. However, the methods are both computationally more tractable than the conventional fewest switches surface hopping, and we foresee that the methods will be powerful for simulations of quantum dynamics in systems with complex bath dynamics, where the system-bath coupling is not too strong compared to the thermal energy.
Collapse
Affiliation(s)
- Thomas L. C. Jansen
- Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|