2
|
Guan S, Song H, Zhou Z, Qu Z. Many-Body Expansion-Based Quantum Mechanical Force Field for Cyclotrimethylene Trinitramine under High Pressure. J Phys Chem Lett 2024; 15:8526-8532. [PMID: 39133832 DOI: 10.1021/acs.jpclett.4c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
RDX undergoes pressures of approximately 30-50 GPa during detonation, leading to significant changes in intermolecular interactions. Accurately describing these interactions is crucial for understanding the energy transfer in the detonation process. To address this, this work introduces a many-body expansion-based quantum mechanical force field (MB-QMFF) to accurately describe RDX's intermolecular interactions under high pressures. Using MB-QMFF, we evaluated various density functionals and found that the M062X functional with GD3 dispersion correction provided the highest accuracy. Regarding intermolecular forces, two-body interactions were the most significant, with three-body interactions being negligible. Additionally, we investigated intermolecular energy variations at different densities (or pressures). The results clearly demonstrate an accurate description of intermolecular interactions by the MB-QMFF scheme. Therefore, we believe that the MB-QMFF scheme can serve as a foundation for the development of RDX-specific force fields and pave the way for future studies on the detonation process of RDX.
Collapse
Affiliation(s)
- Shuai Guan
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Huajie Song
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - Zhongjun Zhou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
6
|
Kitoh-Nishioka H, Shigeta Y, Ando K. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. J Chem Phys 2020; 153:104104. [PMID: 32933280 DOI: 10.1063/5.0018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Practical ways to calculate the tunneling matrix elements and analyze the tunneling pathways for protein electron-transfer (ET) reactions with a fragment molecular orbital (FMO) method are presented. The straightforward use of minimal basis sets only for the atoms involved in the covalent bond detachment in FMO can properly describe the ETs through the protein main-chains with the cost-effective two-body corrections (FMO2) without losing the quality of double-zeta basis sets. The current FMO codes have been interfaced with density functional theory, polarizable continuum model, and model core potentials, with which the FMO-based protein ET calculations can consider the effects of electron correlation, solvation, and transition-metal redox centers. The reasonable performance of the FMO-based ET calculations is demonstrated for three different sets of protein-ET model molecules: (1) hole transfer between two tryptophans covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, (2) ET between two plastoquinones covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, and (3) hole transfer between ruthenium (Ru) and copper (Cu) complexes covalently bridged by a stretch of a polyglycine linker as a model for Ru-modified derivatives of azurin.
Collapse
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koji Ando
- Department of Information and Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
9
|
Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020; 152:154102. [PMID: 32321259 DOI: 10.1063/5.0005188] [Citation(s) in RCA: 581] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.
Collapse
Affiliation(s)
- Giuseppe M J Barca
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Laura Carrington
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Nuwan De Silva
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119, USA
| | - J Emiliano Deustua
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Jeffrey R Gour
- Microsoft, 15590 NE 31st St., Redmond, Washington 98052, USA
| | - Anastasia O Gunina
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Emilie Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Taylor Harville
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Stephan Irle
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Joe Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Karol Kowalski
- Physical Sciences Division, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Sarom S Leang
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Hui Li
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jesse J Lutz
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joani Mato
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Hiroya Nakata
- Kyocera Corporation, Research Institute for Advanced Materials and Devices, 3-5-3 Hikaridai Seika-cho, Souraku-gun, Kyoto 619-0237, Japan
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Poole
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Spencer R Pruitt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Alistair P Rendell
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Luke B Roskop
- Cray Inc., a Hewlett Packard Enterprise Company, 2131 Lindau Ln #1000, Bloomington, Minnesota 55425, USA
| | - Klaus Ruedenberg
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | | | - Michael W Schmidt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Masha Sosonkina
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Vaibhav Sundriyal
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Ananta Tiwari
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Jorge L Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Bryce Westheimer
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Marta Włoch
- 530 Charlesina Dr., Rochester, Michigan 48306, USA
| | - Peng Xu
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
11
|
Sato R, Kitoh-Nishioka H, Ando K, Yamato T. Electron Transfer Pathways of Cyclobutane Pyrimidine Dimer Photolyase Revisited. J Phys Chem B 2018; 122:6912-6921. [PMID: 29890068 DOI: 10.1021/acs.jpcb.8b04333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoinduced electron transfer (ET) reaction of cyclobutane pyrimidine dimer (CPD) photolyase plays an essential role in its DNA repair reaction, and the molecular mechanism of the ET reaction has attracted a large number of experimental and theoretical studies. We investigated the quantum mechanical nature of their ET reactions, characterized by multiple ET pathways of the CPD photolyase derived from Anacystis nidulans. Using the generalized Mulliken-Hush (GMH) method and the bridge green function (GF) methods, we estimated the electronic coupling matrix element, TDA, to be 36 ± 30 cm-1 from the donor (FADH-) to the acceptor (CPD). The estimated ET time was 386 ps, in good agreement with the experimental value (250 ps) in the literature. Furthermore, we performed the molecular dynamics (MD) simulations and ab initio molecular orbital (MO) calculations, and explored the electron tunneling pathway. We examined 20 different structures during the MD trajectory and quantitatively evaluated the electron tunneling currents for each of them. As a result, we demonstrated that the ET route via Asn349 was the dominant pathway among the five major routes via (Adenine/Asn349), (Adenine/Glu283), (Adenine/Glu283/Asn349/Met353), (Met353/Asn349), and (Asn349), indicating that Asn349 is an essential amino acid residue in the ET reaction.
Collapse
Affiliation(s)
- Ryuma Sato
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Hirotaka Kitoh-Nishioka
- Center for Computational Sciences , University of Tsukuba 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Koji Ando
- Department of Information and Sciences , Tokyo Woman's Christian University , 2-6-1 Zempukuji, Suginami-ku , Tokyo 167-8585 , Japan
| | - Takahisa Yamato
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan.,Institute of Genetics and Molecular and Cellular Biology , University of Strasbourg , 1 rue Laurent Fries Parc d'Innovation 67404 Illkirch, Cedex, France
| |
Collapse
|