1
|
Christ A, Härtl P, Seitz M, Edelmann T, Bode M, Waluk J, Leisegang M. Anisotropic coupling of individual vibrational modes to a Cu(110) substrate. Phys Chem Chem Phys 2023; 25:23894-23900. [PMID: 37642506 DOI: 10.1039/d3cp02911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We present a study on the excitation of individual vibrational modes with ballistic charge carriers propagating along the Cu(110) surface. By means of the molecular nanoprobe technique, where the reversible switching of a molecule-in this case tautomerization of porphycene-is utilized to detect excitation events, we reveal anisotropic coupling of two distinct vibrational modes to the substrate. The N-H bending mode, excited below |E| ≈ 376 meV, exhibits maxima perpendicular to the rows of the Cu(110) substrate and minima along the rows. In contrast, the N-H stretching mode, excited above |E| ≈ 376 meV, displays maxima along the rows and is constant otherwise. This inversion of the anisotropy reflects the orthogonality between the N-H bending and stretching mode. Additionally, we observe an energy-dependent asymmetry in the propagation direction of charge carriers injected into the Cu(110) surface state. Hereby, the anisotropic band structure results in a correlation between the group velocity and the tunneling probability into electronic states of the substrate.
Collapse
Affiliation(s)
- Andreas Christ
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Patrick Härtl
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Manuel Seitz
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Tobias Edelmann
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Matthias Bode
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacek Waluk
- Institut of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland
| | - Markus Leisegang
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
2
|
Litman Y, Bonafé FP, Akkoush A, Appel H, Rossi M. First-Principles Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images. J Phys Chem Lett 2023; 14:6850-6859. [PMID: 37487223 PMCID: PMC10405274 DOI: 10.1021/acs.jpclett.3c01216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Tip-enhanced Raman scattering (TERS) has emerged as a powerful tool to obtain subnanometer spatial resolution fingerprints of atomic motion. Theoretical calculations that can simulate the Raman scattering process and provide an unambiguous interpretation of TERS images often rely on crude approximations of the local electric field. In this work, we present a novel and first-principles-based method to compute TERS images by combining Time Dependent Density Functional Theory (TD-DFT) and Density Functional Perturbation Theory (DFPT) to calculate Raman cross sections with realistic local fields. We present TERS results on free-standing benzene and C60 molecules, and on the TCNE molecule adsorbed on Ag(100). We demonstrate that chemical effects on chemisorbed molecules, often ignored in TERS simulations of larger systems, dramatically change the TERS images. This observation calls for the inclusion of chemical effects for predictive theory-experiment comparisons and an understanding of molecular motion at the nanoscale.
Collapse
Affiliation(s)
- Yair Litman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Franco P. Bonafé
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alaa Akkoush
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Heiko Appel
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Mariana Rossi
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
3
|
Jaekel S, Durant E, Schied M, Persson M, Ostapko J, Kijak M, Waluk J, Grill L. Tautomerization of single asymmetric oxahemiporphycene molecules on Cu(111). Phys Chem Chem Phys 2023; 25:1096-1104. [PMID: 36530140 DOI: 10.1039/d2cp04746b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have studied 22-oxahemiporphycene molecules by a combination of scanning tunneling microscopy at low temperatures and density functional theory calculations. In contrast to other molecular switches with typically two switching states, these molecules can in principle exist in three different tautomers, due to their asymmetry and three inequivalent binding positions of a hydrogen atom in their macrocycle. Different tautomers are identified from the typical appearance on the surface and tunneling electrons can be used to tautomerize single molecules in a controllable way with the highest rates if the STM tip is placed close to the hydrogen binding positions in the cavity. Characteristic switching processes are explained by the different energy pathways upon adsorption on the surface. Upon applying higher bias voltages, deprotonation occurs instead of tautomerization, which becomes evident in the molecular appearance.
Collapse
Affiliation(s)
- Simon Jaekel
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| | - Emile Durant
- Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Monika Schied
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| | - Mats Persson
- Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Jakub Ostapko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Leonhard Grill
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| |
Collapse
|
4
|
Mbakara I, Gajewska A, Listkowski A, Kijak M, Nawara K, Kumpulainen T, Vauthey E, Waluk J. Spectroscopic investigation of photophysics and tautomerism of amino- and nitroporphycenes. Phys Chem Chem Phys 2022; 24:29655-29666. [PMID: 36453100 DOI: 10.1039/d2cp04555a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1-S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.
Collapse
Affiliation(s)
- Idaresit Mbakara
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Agnieszka Gajewska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Arkadiusz Listkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Krzysztof Nawara
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Tatu Kumpulainen
- Physical Chemistry Department, Sciences II, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Physical Chemistry Department, Sciences II, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
5
|
Cheng YH, Zhu YC, Kang W, Li X, Fang W. Determination of concerted or stepwise mechanism of hydrogen tunneling from isotope effects: Departure between experiment and theory. J Chem Phys 2022; 156:124304. [DOI: 10.1063/5.0085010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isotope substitution is an important experimental technique that offers deep insight into reaction mechanisms, as the measured kinetic isotope effects (KIEs) can be directly compared with theory. For multiple proton transfer processes, there are two types of mechanisms: stepwise transfer and concerted transfer. The Bell-Limbach model provides a simple theory to determine whether the proton transfer mechanism is stepwise or concerted from KIEs. Recent STM experiments have studied the proton switching process in water tetramers on NaCl(001). Theoretical studies predict that this process occurs via a concerted mechanism, however, the experimental KIEs resemble the Bell-Limbach model for stepwise tunneling, raising question on the underlying mechanism or the validity of the model. We study this system using ab initio instanton theory, and in addition to thermal rates, we also considered microcanonical rates, as well as tunneling splittings. Instanton theory predicts a concerted mechanism, and the KIEs for tunneling rates (both thermal and microcanonical) upon deuteration are consistent with the Bell-Limbach model for concerted tunneling, but could not explain the experiments. For tunneling splittings, partial and full deuteration changes the size of it in a similar fashion to how it changes the rates. We further examined the Bell-Limbach model in another system, porphycene, which has both stepwise and concerted tunneling pathways. The KIEs predicted by instanton theory are again consistent with the Bell-Limbach model. This study highlights differences between KIEs in stepwise and concerted tunneling, and the discrepancy between theory and recent STM experiments. New theory/experiments are desired to settle this problem.
Collapse
Affiliation(s)
| | | | - Wei Kang
- Center for Applied Physics and Technology, Peking University, China
| | | | - Wei Fang
- Dalian Institute of Chemical Physics, China
| |
Collapse
|
6
|
Pszona M, Gawinkowski S, Jäger R, Kamińska I, Waluk J. Influence of bulky substituents on single-molecule SERS sensitivity. J Chem Phys 2022; 156:014201. [PMID: 34998322 DOI: 10.1063/5.0074840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The surface-enhanced Raman spectroscopy (SERS) detection limit strongly depends on the molecular structure, which we demonstrate for a family of tert-butyl-substituted porphycenes. Even though the investigated species present very similar photophysical properties, the ratio between the SERS signal and fluorescence background depends on the number of bulky tert-butyl groups. Moreover, the probability of single molecule detection systematically drops with the number of the moieties attached to the pyrrole ring. As steric hindrance is the only significantly changing feature among the studied chromophores, we attribute the observed phenomena to the spatial structure. We also show that the sensitivity of the SERS technique can be improved by lowering the temperature. We managed to observe single-molecule spectra for derivatives for which this was unattainable at room temperature.
Collapse
Affiliation(s)
- Maria Pszona
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland
| | - Sylwester Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland
| | - Regina Jäger
- Institute of Physical and Theoretical Chemistry and LISA, University of Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Izabela Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland
| |
Collapse
|
7
|
Liu W, Yang S, Li J, Su G, Ren J. One molecule, two states: Single molecular switch on metallic electrodes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Ji‐Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
8
|
Litman Y, Rossi M. Multidimensional Hydrogen Tunneling in Supported Molecular Switches: The Role of Surface Interactions. PHYSICAL REVIEW LETTERS 2020; 125:216001. [PMID: 33275002 DOI: 10.1103/physrevlett.125.216001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
The nuclear tunneling crossover temperature (T_{c}) of hydrogen transfer reactions in supported molecular-switch architectures can lie close to room temperature. This calls for the inclusion of nuclear quantum effects (NQEs) in the calculation of reaction rates even at high temperatures. However, computations of NQEs relying on standard parametrized dimensionality-reduced models quickly become inadequate in these environments. In this Letter, we study the paradigmatic molecular switch based on porphycene molecules adsorbed on metallic surfaces with full-dimensional calculations that combine density-functional theory for the electrons with the semiclassical ring-polymer instanton approximation for the nuclei. We show that the double intramolecular hydrogen transfer (DHT) rate can be enhanced by orders of magnitude due to surface fluctuations in the deep-tunneling regime. We also explain the origin of an Arrhenius temperature dependence of the rate below T_{c} and why this dependence differs at different surfaces. We propose a simple model to rationalize the temperature dependence of DHT rates spanning diverse fcc [110] surfaces.
Collapse
Affiliation(s)
- Yair Litman
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
9
|
Gorski A, Golec B, Wałecki W, Peukert S, Gil M, Gawinkowski S, Waluk J. Matrix isolation studies of vibrational structure of hemiporphycene. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Listkowski A, Kharchenko A, Ciąćka P, Kijak M, Masiera N, Rybakiewicz R, Luboradzki R, Fita P, Waluk J. Fluorinated Porphycenes: Synthesis, Spectroscopy, Photophysics, and Tautomerism. Chempluschem 2020; 85:2197-2206. [DOI: 10.1002/cplu.202000517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Arkadiusz Listkowski
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
- Faculty of Mathematics and Natural Sciences College of Science Cardinal Stefan Wyszyński University Dewajtis 5 01-815 Warsaw Poland
| | - Anastasiia Kharchenko
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
| | - Piotr Ciąćka
- Institute of Experimental Physics Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw Poland
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
| | - Michał Kijak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
| | - Natalia Masiera
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
| | - Renata Rybakiewicz
- Faculty of Mathematics and Natural Sciences College of Science Cardinal Stefan Wyszyński University Dewajtis 5 01-815 Warsaw Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
| | - Piotr Fita
- Institute of Experimental Physics Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Jacek Waluk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 01-224 Warsaw Poland
- Faculty of Mathematics and Natural Sciences College of Science Cardinal Stefan Wyszyński University Dewajtis 5 01-815 Warsaw Poland
| |
Collapse
|
11
|
Song S, Guo N, Li X, Li G, Haketa Y, Telychko M, Su J, Lyu P, Qiu Z, Fang H, Peng X, Li J, Wu X, Li Y, Su C, Koh MJ, Wu J, Maeda H, Zhang C, Lu J. Real-Space Imaging of a Single-Molecule Monoradical Reaction. J Am Chem Soc 2020; 142:13550-13557. [PMID: 32633951 DOI: 10.1021/jacs.0c05337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic radicals consisting of light elements exhibit a low spin-orbit coupling and weak hyperfine interactions with a long spin coherence length, which are crucial for future applications in molecular spintronics. However, the synthesis and characterization of these organic radicals have been a formidable challenge due to their chemical instability arising from unpaired electrons. Here, we report a direct imaging of the surface chemical transformation of an organic monoradical synthesized via the monodehydrogenation of a chemically designed precursor. Bond-resolved scanning tunneling microscopy unambiguously resolves various products formed through a complex structural dissociation and rearrangement of organic monoradicals. Density functional theory calculations reveal detailed reaction pathways from the monoradical to different cyclized products. Our study provides unprecedented insights into complex surface reaction mechanisms of organic radical reactions at the single molecule level, which may guide the design of stable organic radicals for future quantum technology applications.
Collapse
Affiliation(s)
- Shaotang Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China
| | - Na Guo
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Xinzhe Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hanyan Fang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinbang Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ying Li
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China
| | - Chenliang Su
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Chun Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
12
|
Qi J, Gao Y, Jia H, Richter M, Huang L, Cao Y, Yang H, Zheng Q, Berger R, Liu J, Lin X, Lu H, Cheng Z, Ouyang M, Feng X, Du S, Gao HJ. Force-Activated Isomerization of a Single Molecule. J Am Chem Soc 2020; 142:10673-10680. [PMID: 32459961 DOI: 10.1021/jacs.0c00192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and controlling isomerization at the single molecular level should provide new insight into the molecular dynamics and design guidelines of functional devices. Scanning tunneling microscopy (STM) has been demonstrated to be a powerful tool to study isomerization of single molecules on a substrate, by either electric field or inelastic electron tunneling mechanisms. A similar molecular isomerization process can in principle be induced by mechanical force; however, relevant study has remained elusive. Here, we demonstrate that isomerization of a N,N-dimethylamino-dianthryl-benzene molecule on Ag(100) can be mechanically driven by the STM tip. The existence of an out-of-plane dimethylamino group in the molecule is found to play a pivotal role in the isomerization process by providing a steric hindrance effect for asymmetric interaction between the STM tip and the molecule. This underlying mechanism is further confirmed by performing molecular dynamics simulations, which show agreement with experimental results. Our work opens the opportunity to manipulate the molecular configuration on the basis of mechanical force.
Collapse
Affiliation(s)
- Jing Qi
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixuan Gao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Haihong Jia
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Marcus Richter
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Li Huang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun Cao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Yang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Zheng
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Reinhard Berger
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Junzhi Liu
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xiao Lin
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongliang Lu
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Jun Gao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Zhang L, Tong Y, Kelai M, Bellec A, Lagoute J, Chacon C, Girard Y, Rousset S, Boillot M, Rivière E, Mallah T, Otero E, Arrio M, Sainctavit P, Repain V. Anomalous Light‐Induced Spin‐State Switching for Iron(II) Spin‐Crossover Molecules in Direct Contact with Metal Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luqiong Zhang
- Institut de Minéralogie, de Physique des Matériaux et, de Cosmochimie, CNRS UMR7590 Sorbonne Université, MNHN 75252 Paris Cedex 5 France
| | - Yongfeng Tong
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Massine Kelai
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Amandine Bellec
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Jérôme Lagoute
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Cyril Chacon
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Yann Girard
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Sylvie Rousset
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Marie‐Laure Boillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Univ Paris Sud Université Paris-Saclay CNRS, UMR 8182 91405 Orsay Cedex France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Univ Paris Sud Université Paris-Saclay CNRS, UMR 8182 91405 Orsay Cedex France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Univ Paris Sud Université Paris-Saclay CNRS, UMR 8182 91405 Orsay Cedex France
| | - Edwige Otero
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubin 91192 Gif sur Yvette France
| | - Marie‐Anne Arrio
- Institut de Minéralogie, de Physique des Matériaux et, de Cosmochimie, CNRS UMR7590 Sorbonne Université, MNHN 75252 Paris Cedex 5 France
| | - Philippe Sainctavit
- Institut de Minéralogie, de Physique des Matériaux et, de Cosmochimie, CNRS UMR7590 Sorbonne Université, MNHN 75252 Paris Cedex 5 France
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubin 91192 Gif sur Yvette France
| | - Vincent Repain
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| |
Collapse
|
14
|
Zhang L, Tong Y, Kelai M, Bellec A, Lagoute J, Chacon C, Girard Y, Rousset S, Boillot M, Rivière E, Mallah T, Otero E, Arrio M, Sainctavit P, Repain V. Anomalous Light‐Induced Spin‐State Switching for Iron(II) Spin‐Crossover Molecules in Direct Contact with Metal Surfaces. Angew Chem Int Ed Engl 2020; 59:13341-13346. [DOI: 10.1002/anie.202003896] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Luqiong Zhang
- Institut de Minéralogie, de Physique des Matériaux et, de Cosmochimie, CNRS UMR7590 Sorbonne Université, MNHN 75252 Paris Cedex 5 France
| | - Yongfeng Tong
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Massine Kelai
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Amandine Bellec
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Jérôme Lagoute
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Cyril Chacon
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Yann Girard
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Sylvie Rousset
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| | - Marie‐Laure Boillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Univ Paris Sud Université Paris-Saclay CNRS, UMR 8182 91405 Orsay Cedex France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Univ Paris Sud Université Paris-Saclay CNRS, UMR 8182 91405 Orsay Cedex France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Univ Paris Sud Université Paris-Saclay CNRS, UMR 8182 91405 Orsay Cedex France
| | - Edwige Otero
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubin 91192 Gif sur Yvette France
| | - Marie‐Anne Arrio
- Institut de Minéralogie, de Physique des Matériaux et, de Cosmochimie, CNRS UMR7590 Sorbonne Université, MNHN 75252 Paris Cedex 5 France
| | - Philippe Sainctavit
- Institut de Minéralogie, de Physique des Matériaux et, de Cosmochimie, CNRS UMR7590 Sorbonne Université, MNHN 75252 Paris Cedex 5 France
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubin 91192 Gif sur Yvette France
| | - Vincent Repain
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques, CNRS 75013 Paris France
| |
Collapse
|
15
|
Litman Y, Behler J, Rossi M. Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics. Faraday Discuss 2020; 221:526-546. [DOI: 10.1039/c9fd00056a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Approximate quantum dynamics succeed in predicting a temperature-dependent blue-shift of the high-frequency stretch bands that arise from vibrational coupling between low-frequency thermally activated modes and high-frequency quantized ones. Classical nuclei molecular dynamics fail and instead predict a red-shift.
Collapse
Affiliation(s)
- Yair Litman
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Jörg Behler
- Universität Göttingen
- Institut für Physikalische Chemie, Theoretische Chemie
- 37077 Göttingen
- Germany
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| |
Collapse
|
16
|
Harsh R, Joucken F, Chacon C, Repain V, Girard Y, Bellec A, Rousset S, Sporken R, Smogunov A, Dappe YJ, Lagoute J. Controlling Hydrogen-Transfer Rate in Molecules on Graphene by Tunable Molecular Orbital Levels. J Phys Chem Lett 2019; 10:6897-6903. [PMID: 31638814 DOI: 10.1021/acs.jpclett.9b02902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular switches are building blocks of potential interest to store binary information, especially when they can be organized in periodic lattices. Among the variety of possible systems, switches based on hydrogen transfer are of special importance because they allow the switching operation to occur without severe conformational change that may interfere with neighboring molecular units. We have studied the excitation process of hydrogen transfer inside porphyrin molecules assembled on a graphene surface, using a low-temperature scanning tunneling microscope. We show that this hydrogen transfer is induced by an electronic resonant tunneling process through the molecular orbitals. Using nitrogen doping of graphene, we tune the rate of hydrogen transfer by shifting the molecular orbital energies owing to the charge transfer at nitrogen dopant sites in the graphene lattice. The control of the switching process allows the storage of information inside a molecular lattice, which is demonstrated by writing an artificial pattern inside a molecular island.
Collapse
Affiliation(s)
- Rishav Harsh
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| | - Frédéric Joucken
- Research Center in Physics of Matter and Radiation (PMR) , Université de Namur , 61 Rue de Bruxelles , 5000 Namur , Belgium
| | - Cyril Chacon
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| | - Vincent Repain
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| | - Yann Girard
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| | - Amandine Bellec
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| | - Sylvie Rousset
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| | - Robert Sporken
- Research Center in Physics of Matter and Radiation (PMR) , Université de Namur , 61 Rue de Bruxelles , 5000 Namur , Belgium
| | - Alexander Smogunov
- SPEC, CEA, CNRS , Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Yannick J Dappe
- SPEC, CEA, CNRS , Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jérôme Lagoute
- Université de Paris , Laboratoire Matériaux et Phénomènes Quantiques, CNRS , F-75013 Paris , France
| |
Collapse
|
17
|
Li J, Yang S, Ren JC, Su G, Li S, Butch CJ, Ding Z, Liu W. Deep Molecular Orbital Driven High-Temperature Hydrogen Tautomerization Switching. J Phys Chem Lett 2019; 10:6755-6761. [PMID: 31613631 DOI: 10.1021/acs.jpclett.9b02671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen tautomerization molecular switches, a promising class of molecular components for the construction of complex nanocircuits, have been extensively studied using low-temperature scanning tunneling microscopy. However, these molecules are generally only reliably controllable in cryogenic environments, obstructing their utility in real devices. Here, we use dispersion-inclusive density functional theory and systematically investigate the adsorption and tautomerization behaviors of porphycene on six transition-metal surfaces. Among these surfaces, we found that hydrogen tautomerization on the Pt(110) surface corresponds to the largest switching barrier, allowing a controllable transition at high temperature. The switching behavior is closely related to the exceptional degree of charge transfer in the HOMO-2 orbital, illustrating the important role of deep orbital-surface interactions in porphycene molecular switching. Our work provides an in-depth understanding of the porphycene tautomerization mechanism and highlights new research avenues toward the practical application of molecular switches.
Collapse
Affiliation(s)
- Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Shuang Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Christopher J Butch
- Department of Biomedical Engineering , Nanjing University , Nanjing , China
- Blue Marble Space Institute of Science , Seattle , Washington 98154 , United States
| | - Zhigang Ding
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| |
Collapse
|
18
|
Theoretical investigation of metalated and unmetalated pyrphyrins immobilized on Ag(111) surface. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Lin C, Durant E, Persson M, Rossi M, Kumagai T. Real-Space Observation of Quantum Tunneling by a Carbon Atom: Flipping Reaction of Formaldehyde on Cu(110). J Phys Chem Lett 2019; 10:645-649. [PMID: 30676024 PMCID: PMC6728093 DOI: 10.1021/acs.jpclett.8b03806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
We present a direct observation of carbon-atom tunneling in the flipping reaction of formaldehyde between its two mirror-reflected states on a Cu(110) surface using low-temperature scanning tunneling microscopy (STM). The flipping reaction was monitored in real time, and the reaction rate was found to be temperature independent below 10 K. This indicates that this reaction is governed by quantum mechanical tunneling, albeit involving a substantial motion of the carbon atom (∼1 Å). In addition, deuteration of the formaldehyde molecule resulted in a significant kinetic isotope effect ( RCH2O/ RCD2O ≈ 10). The adsorption structure, reaction pathway, and tunneling probability were examined by density functional theory calculations, which corroborate the experimental observations.
Collapse
Affiliation(s)
- Chenfang Lin
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Emile Durant
- Surface
Science Research Centre and Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Mats Persson
- Surface
Science Research Centre and Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Mariana Rossi
- Theory
Department, Fritz-Haber Institute of the
Max-Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Takashi Kumagai
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Litman Y, Richardson JO, Kumagai T, Rossi M. Elucidating the Nuclear Quantum Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene. J Am Chem Soc 2019; 141:2526-2534. [PMID: 30648386 PMCID: PMC6728096 DOI: 10.1021/jacs.8b12471] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
We address the double hydrogen transfer
(DHT) dynamics of the porphycene molecule, a complex paradigmatic
system in which the making and breaking of H-bonds in a highly anharmonic
potential energy surface require a quantum mechanical treatment not
only of the electrons but also of the nuclei. We combine density functional
theory calculations, employing hybrid functionals and van der Waals
corrections, with recently proposed and optimized path-integral ring-polymer
methods for the approximation of quantum vibrational spectra and reaction
rates. Our full-dimensional ring-polymer instanton simulations show
that below 100 K the concerted DHT tunneling pathway dominates but
between 100 and 300 K there is a competition between concerted and
stepwise pathways when nuclear quantum effects are included. We obtain
ground-state reaction rates of 2.19 × 1011 s–1 at 150 K and 0.63 × 1011 s–1 at
100 K, in good agreement with experiment. We also reproduce the puzzling
N–H stretching band of porphycene with very good accuracy from
thermostated ring-polymer molecular dynamics simulations. The position
and line shape of this peak, centered at around 2600 cm–1 and spanning 750 cm–1, stem from a combination
of very strong H-bonds, the coupling to low-frequency modes, and the
access to cis-like isomeric conformations, which
cannot be appropriately captured with classical-nuclei dynamics. These
results verify the appropriateness of our general theoretical approach
and provide a framework for a deeper physical understanding of hydrogen
transfer dynamics in complex systems.
Collapse
Affiliation(s)
- Yair Litman
- Theory Department , Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6 , 14195 Berlin , Germany
| | | | - Takashi Kumagai
- Physical Chemistry Department , Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Mariana Rossi
- Theory Department , Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6 , 14195 Berlin , Germany
| |
Collapse
|
21
|
One-pot synthesis, spectroscopic characterization and DFT study of novel 8-azacoumarin derivatives as eco-friendly insecticidal agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1402-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Liu S, Baugh D, Motobayashi K, Zhao X, Levchenko SV, Gawinkowski S, Waluk J, Grill L, Persson M, Kumagai T. Anharmonicity in a double hydrogen transfer reaction studied in a single porphycene molecule on a Cu(110) surface. Phys Chem Chem Phys 2018; 20:12112-12119. [PMID: 29676424 DOI: 10.1039/c8cp00178b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anharmonicity plays a crucial role in hydrogen transfer reactions in hydrogen-bonding systems, which leads to a peculiar spectral line shape of the hydrogen stretching mode as well as highly complex intra/intermolecular vibrational energy relaxation. Single-molecule study with a well-defined model is necessary to elucidate a fundamental mechanism. Recent low-temperature scanning tunnelling microscopy (STM) experiments revealed that the cis↔cis tautomerization in a single porphycene molecule on Cu(110) at 5 K can be induced by vibrational excitation via an inelastic electron tunnelling process and the N-H(D) stretching mode couples with the tautomerization coordinate [Kumagai et al. Phys. Rev. Lett. 2013, 111, 246101]. Here we discuss a pronounced anharmonicity of the N-H stretching mode observed in the STM action spectra and the conductance spectra. Density functional theory calculations find a strong intermode coupling of the N-H stretching with an in-plane bending mode within porphycene on Cu(110).
Collapse
Affiliation(s)
- S Liu
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|