1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
London N, Bu S, Johnson B, Ananth N. Mean-Field Ring Polymer Rates Using a Population Dividing Surface. J Phys Chem A 2024; 128:5730-5739. [PMID: 38976564 DOI: 10.1021/acs.jpca.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mean-field ring polymer molecular dynamics offers a computationally efficient method for the simulation of reaction rates in multilevel systems. Previous work has established that, to model a nonadiabatic state-to-state reaction accurately, it is necessary to ensure reactive trajectories form kinked ring polymer configurations at the dividing surface. Building on this idea, we introduce a population difference coordinate and a reactive flux expression modified to only include contributions from kinked configurations. We test the accuracy of the resulting mean-field rate theory on a series of linear vibronic coupling model systems. We demonstrate that this new kMF-RP rate approach is efficient to implement and quantitatively accurate for models over a wide range of driving forces, coupling strengths, and temperatures.
Collapse
Affiliation(s)
- Nathan London
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Siyu Bu
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Britta Johnson
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Nandini Ananth
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Liu XY, Wang SR, Fang WH, Cui G. Nuclear Quantum Effects on Nonadiabatic Dynamics of a Green Fluorescent Protein Chromophore Analogue: Ring-Polymer Surface-Hopping Simulation. J Chem Theory Comput 2024; 20:3426-3439. [PMID: 38656202 DOI: 10.1021/acs.jctc.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we have used the "on-the-fly" ring-polymer surface-hopping simulation method with the centroid approximation (RPSH-CA), in combination with the multireference OM2/MRCI electronic structure calculations to study the photoinduced dynamics of a green fluorescent protein (GFP) chromophore analogue in the gas phase, i.e., o-HBI, at 50, 100, and 300 K with 1, 5, 10, and 15 beads (3600 1 ps trajectories). The electronic structure calculations identified five new minimum-energy conical intersection (MECI) structures, which, together with the previous one, play crucial roles in the excited-state decay dynamics of o-HBI. It is also found that the excited-state intramolecular proton transfer (ESIPT) occurs in an ultrafast manner and is completed within 20 fs in all the simulation conditions because there is no barrier associated with this ESIPT process in the S1 state. However, the other excited-state dynamical results are strongly related to the number of beads. At 50 and 100 K, the nuclear quantum effects (NQEs) are very important; therefore, the excited-state dynamical results change significantly with the bead number. For example, the S1 decay time deduced from time-dependent state populations becomes longer as the bead number increases. Nevertheless, an essentially convergent trend is observed when the bead number is close to 10. In contrast, at 300 K, the NQEs become weaker and the above dynamical results converge very quickly even with 1 bead. Most importantly, the NQEs seriously affect the excited-state decay mechanism of o-HBI. At 50 and 100 K, most trajectories decay to the S0 state via perpendicular keto MECIs, whereas, at 300 K, only twisted keto MECIs are responsible for the excited-state decay. The present work not only comprehensively explores the temperature-dependent photoinduced dynamics of o-HBI, but also demonstrates the importance and necessity of NQEs in nonadiabatic dynamics simulations, especially at relatively low temperatures.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Sheng-Rui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Bi RH, Dou W. Electronic friction near metal surface: Incorporating nuclear quantum effect with ring polymer molecular dynamics. J Chem Phys 2024; 160:074110. [PMID: 38380747 DOI: 10.1063/5.0187646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The molecular dynamics with electronic friction (MDEF) approach can accurately describe nonadiabatic effects at metal surfaces in the weakly nonadiabatic limit. That being said, the MDEF approach treats nuclear motion classically such that the nuclear quantum effects are completely missing in the approach. To address this limitation, we combine Electronic Friction with Ring Polymer Molecular Dynamics (EF-RPMD). In particular, we apply the averaged electronic friction from the metal surface to the centroid mode of the ring polymer. We benchmark our approach against quantum dynamics to show that EF-RPMD can accurately capture zero-point energy as well as transition dynamics. In addition, we show that EF-RPMD can correctly predict the electronic transfer rate near metal surfaces in the tunneling limit as well as the barrier crossing limit. We expect that our approach will be very useful to study nonadiabatic dynamics near metal surfaces when nuclear quantum effects become essential.
Collapse
Affiliation(s)
- Rui-Hao Bi
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
5
|
Lawrence JE, Mannouch JR, Richardson JO. Recovering Marcus Theory Rates and Beyond without the Need for Decoherence Corrections: The Mapping Approach to Surface Hopping. J Phys Chem Lett 2024; 15:707-716. [PMID: 38214476 PMCID: PMC10823533 DOI: 10.1021/acs.jpclett.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
It is well-known that fewest-switches surface hopping (FSSH) fails to correctly capture the quadratic scaling of rate constants with diabatic coupling in the weak-coupling limit, as expected from Fermi's golden rule and Marcus theory. To address this deficiency, the most widely used approach is to introduce a "decoherence correction", which removes the inconsistency between the wave function coefficients and the active state. Here we investigate the behavior of a new nonadiabatic trajectory method, called the mapping approach to surface hopping (MASH), on systems that exhibit an incoherent rate behavior. Unlike FSSH, MASH hops between active surfaces deterministically and can never have an inconsistency between the wave function coefficients and the active state. We show that MASH not only can describe rates for intermediate and strong diabatic coupling but also can accurately reproduce the results of Marcus theory in the golden-rule limit, without the need for a decoherence correction. MASH is therefore a significant improvement over FSSH in the simulation of nonadiabatic reactions.
Collapse
Affiliation(s)
- Joseph E. Lawrence
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zurich, Switzerland
| | - Jonathan R. Mannouch
- Hamburg
Center for Ultrafast Imaging, Universität
Hamburg and Max Planck Institute for the Structure and Dynamics of
Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jeremy O. Richardson
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Limbu DK, Shakib FA. Real-Time Dynamics and Detailed Balance in Ring Polymer Surface Hopping: The Impact of Frustrated Hops. J Phys Chem Lett 2023; 14:8658-8666. [PMID: 37732811 DOI: 10.1021/acs.jpclett.3c02085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ring polymer surface hopping (RPSH) has been recently introduced as a well-tailored method for incorporating nuclear quantum effects, such as zero-point energy and tunneling, into nonadiabatic molecular dynamics simulations. The practical widespread usage of RPSH demands a comprehensive benchmarking of different reaction regimes and conditions with equal emphasis on demonstrating both the cons and the pros of the method. Here, we investigate the fundamental questions related to the conservation of energy and detailed balance in the context of RPSH. Using Tully's avoided crossing model as well as a 2-state quantum system coupled to a classical bath undergoing Langevin dynamics, we probe the critical problem of the proper treatment of the classically forbidden transitions stemming from the surface hopping algorithm. We show that proper treatment of these frustrated hops is key to the accurate description of real-time dynamics as well as reproducing the correct quantum Boltzmann populations.
Collapse
Affiliation(s)
- Dil K Limbu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Zhao R, You P, Meng S. Ring Polymer Molecular Dynamics with Electronic Transitions. PHYSICAL REVIEW LETTERS 2023; 130:166401. [PMID: 37154659 DOI: 10.1103/physrevlett.130.166401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Full quantum dynamics of molecules and materials is of fundamental importance, which requires a faithful description of simultaneous quantum motions of the electron and nuclei. A new scheme is developed for nonadiabatic simulations of coupled electron-nuclear quantum dynamics with electronic transitions based on the Ehrenfest theorem and ring polymer molecular dynamics. Built upon the isomorphic ring polymer Hamiltonian, time-dependent multistate electronic Schrödinger equations are solved self-consistently with approximate equation of motions for nuclei. Each bead bears a distinct electronic configuration and thus moves on a specific effective potential. This independent-bead approach provides an accurate description of the real-time electronic population and quantum nuclear trajectory, maintaining a good agreement with the exact quantum solution. Implementation of first-principles calculations enables us to simulate photoinduced proton transfer in H_{2}O-H_{2}O^{+} where we find a good agreement with experiment.
Collapse
Affiliation(s)
- Ruji Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
8
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
9
|
Abstract
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
Collapse
|
10
|
Amati G, Runeson JE, Richardson JO. On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids. J Chem Phys 2023; 158:064113. [PMID: 36792511 DOI: 10.1063/5.0137828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trajectory-based methods that propagate classical nuclei on multiple quantum electronic states are often used to simulate nonadiabatic processes in the condensed phase. A long-standing problem of these methods is their lack of detailed balance, meaning that they do not conserve the equilibrium distribution. In this article, we investigate ideas for restoring detailed balance in mixed quantum-classical systems by tailoring the previously proposed spin-mapping approach to thermal equilibrium. We find that adapting the spin magnitude can recover the correct long-time populations but is insufficient to conserve the full equilibrium distribution. The latter can however be achieved by a more flexible mapping of the spin onto an ellipsoid, which is constructed to fulfill detailed balance for arbitrary potentials. This ellipsoid approach solves the problem of negative populations that has plagued previous mapping approaches and can therefore be applied also to strongly asymmetric and anharmonic systems. Because it conserves the thermal distribution, the method can also exploit efficient sampling schemes used in standard molecular dynamics, which drastically reduces the number of trajectories needed for convergence. The dynamics does however still have mean-field character, as is observed most clearly by evaluating reaction rates in the golden-rule limit. This implies that although the ellipsoid mapping provides a rigorous framework, further work is required to find an accurate classical-trajectory approximation that captures more properties of the true quantum dynamics.
Collapse
Affiliation(s)
- Graziano Amati
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Johan E Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
11
|
Bossion D, Chowdhury SN, Huo P. Non-adiabatic ring polymer molecular dynamics in the phase space of the SU(N) Lie group. J Chem Phys 2023; 158:044123. [PMID: 36725494 DOI: 10.1063/5.0133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We derive the non-adiabatic ring polymer molecular dynamics (RPMD) approach in the phase space of the SU(N) Lie Group. This method, which we refer to as the spin mapping non-adiabatic RPMD (SM-NRPMD), is based on the spin-mapping formalism for the electronic degrees of freedom (DOFs) and ring polymer path-integral description for the nuclear DOFs. Using the Stratonovich-Weyl transform for the electronic DOFs and the Wigner transform for the nuclear DOFs, we derived an exact expression of the Kubo-transformed time-correlation function (TCF). We further derive the spin mapping non-adiabatic Matsubara dynamics using the Matsubara approximation that removes the high frequency nuclear normal modes in the TCF and derive the SM-NRPMD approach from the non-adiabatic Matsubara dynamics by discarding the imaginary part of the Liouvillian. The SM-NRPMD method has numerical advantages compared to the original NRPMD method based on the Meyer-Miller-Stock-Thoss (MMST) mapping formalism due to a more natural mapping using the SU(N) Lie Group that preserves the symmetry of the original system. We numerically compute the Kubo-transformed position auto-correlation function and electronic population correlation function for three-state model systems. The numerical results demonstrate the accuracy of the SM-NRPMD method, which outperforms the original MMST-based NRPMD. We envision that the SM-NRPMD method will be a powerful approach to simulate electronic non-adiabatic dynamics and nuclear quantum effects accurately.
Collapse
Affiliation(s)
- Duncan Bossion
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Sutirtha N Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
12
|
Anderson MC, Schile AJ, Limmer DT. Nonadiabatic transition paths from quantum jump trajectories. J Chem Phys 2022; 157:164105. [DOI: 10.1063/5.0102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a means of studying rare reactive pathways in open quantum systems using transition path theory and ensembles of quantum jump trajectories. This approach allows for the elucidation of reactive paths for dissipative, nonadiabatic dynamics when the system is embedded in a Markovian environment. We detail the dominant pathways and rates of thermally activated processes and the relaxation pathways and photoyields following vertical excitation in a minimal model of a conical intersection. We find that the geometry of the conical intersection affects the electronic character of the transition state as defined through a generalization of a committor function for a thermal barrier crossing event. Similarly, the geometry changes the mechanism of relaxation following a vertical excitation. Relaxation in models resulting from small diabatic coupling proceeds through pathways dominated by pure dephasing, while those with large diabatic coupling proceed through pathways limited by dissipation. The perspective introduced here for the nonadiabatic dynamics of open quantum systems generalizes classical notions of reactive paths to fundamentally quantum mechanical processes.
Collapse
Affiliation(s)
- Michelle C. Anderson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Addison J. Schile
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Trenins G, Richardson JO. Nonadiabatic instanton rate theory beyond the golden-rule limit. J Chem Phys 2022; 156:174115. [DOI: 10.1063/5.0088518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fermi's golden rule describes the leading-order behaviour of the reaction rate as a function of the diabatic coupling. Its asymptotic (ℏ →0) limit is the semiclassical golden-rule instanton rate theory, which rigorously approximates nuclear quantum effects, lends itself to efficient numerical computation and gives physical insight into reaction mechanisms. However the golden rule by itself becomes insufficient as the strength of the diabatic coupling increases, so higher-order terms must be additionally considered. In this work we give a first-principles derivation of the next-order term beyond the golden rule, represented as a sum of three components. Two of them lead to new instanton pathways that extend the golden-rule case and, among other factors, account for the effects of recrossing on the full rate. The remaining component derives from the equilibrium partition function and accounts for changes in potential energy around the reactant and product wells due to diabatic coupling. The new semiclassical theory demands little computational effort beyond a golden-rule instanton calculation. It makes it possible to rigorously assess the accuracy of the golden-rule approximation and sets the stage for future work on general semiclassical nonadiabatic rate theories.
Collapse
Affiliation(s)
- George Trenins
- ETH Zurich Department of Chemistry and Applied Biosciences, Switzerland
| | | |
Collapse
|
14
|
Giannini S, Blumberger J. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Acc Chem Res 2022; 55:819-830. [PMID: 35196456 PMCID: PMC8928466 DOI: 10.1021/acs.accounts.1c00675] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Organic semiconductors (OSs) are an exciting
class of materials
that have enabled disruptive technologies in this century including
large-area electronics, flexible displays, and inexpensive solar cells.
All of these technologies rely on the motion of electrical charges
within the material and the diffusivity of these charges critically
determines their performance. In this respect, it is remarkable that
the nature of the charge transport in these materials has puzzled
the community for so many years, even for apparently simple systems
such as molecular single crystals: some experiments would better fit
an interpretation in terms of a localized particle picture, akin to
molecular or biological electron transfer, while others are in better
agreement with a wave-like interpretation, more akin to band transport
in metals. Exciting recent progress in the theory and simulation
of charge
carrier transport in OSs has now led to a unified understanding of
these disparate findings, and this Account will review one of these
tools developed in our laboratory in some detail: direct charge carrier
propagation by quantum-classical nonadiabatic molecular dynamics.
One finds that even in defect-free crystals the charge carrier can
either localize on a single molecule or substantially delocalize over
a large number of molecules depending on the relative strength of
electronic couplings between the molecules, reorganization, or charge
trapping energy of the molecule and thermal fluctuations of electronic
couplings and site energies, also known as electron–phonon
couplings. Our simulations predict that in molecular OSs exhibiting
some of
the highest measured charge mobilities to date, the charge carrier
forms “flickering” polarons, objects that are delocalized
over 10–20 molecules on average and that constantly change
their shape and extension under the influence of thermal disorder.
The flickering polarons propagate through the OS by short (≈10
fs long) bursts of the wave function that lead to an expansion of
the polaron to about twice its size, resulting in spatial displacement,
carrier diffusion, charge mobility, and electrical conductivity. Arguably
best termed “transient delocalization”, this mechanistic
scenario is very similar to the one assumed in transient localization
theory and supports its assertions. We also review recent applications
of our methodology to charge transport in disordered and nanocrystalline
samples, which allows us to understand the influence of defects and
grain boundaries on the charge propagation. Unfortunately, the
energetically favorable packing structures of
typical OSs, whether molecular or polymeric, places fundamental constraints
on charge mobilities/electronic conductivity compared to inorganic
semiconductors, which limits their range of applications. In this
Account, we review the design rules that could pave the way for new
very high-mobility OS materials and we argue that 2D covalent organic
frameworks are one of the most promising candidates to satisfy them. We conclude that our nonadiabatic dynamics method is a powerful
approach for predicting charge carrier transport in crystalline and
disordered materials. We close with a brief outlook on extensions
of the method to exciton transport, dissociation, and recombination.
This will bring us a step closer to an understanding of the birth,
survival, and annihiliation of charges at interfaces of optoelectronic
devices.
Collapse
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Li C, Liu Q, Zhang L, Li Y, Jiang B. Ring polymer molecular dynamics in gas-surface reactions: tests on initial sampling and potential energy landscape. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1941367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chen Li
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Qinghua Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structures and Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, People’s Republic of China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
16
|
Chowdhury SN, Huo P. Non-adiabatic Matsubara dynamics and non-adiabatic ring-polymer molecular dynamics. J Chem Phys 2021; 154:124124. [PMID: 33810665 DOI: 10.1063/5.0042136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We present the non-adiabatic Matsubara dynamics, a general framework for computing the time-correlation function (TCF) of electronically non-adiabatic systems. This new formalism is derived based on the generalized Kubo-transformed TCF using the Wigner representation for both the nuclear degrees of freedom and the electronic mapping variables. By dropping the non-Matsubara nuclear normal modes in the quantum Liouvillian and explicitly integrating these modes out from the expression of the TCF, we derived the non-adiabatic Matsubara dynamics approach. Further making the approximation to drop the imaginary part of the Matsubara Liouvillian and enforce the nuclear momentum integral to be real, we arrived at the non-adiabatic ring-polymer molecular dynamics (NRPMD) approach. We have further justified the capability of NRPMD for simulating the non-equilibrium TCF. This work provides the rigorous theoretical foundation for several recently proposed state-dependent RPMD approaches and offers a general framework for developing new non-adiabatic quantum dynamics methods in the future.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
17
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
18
|
Dresselhaus T, Bungey CBA, Knowles PJ, Manby FR. Coupling electrons and vibrations in molecular quantum chemistry. J Chem Phys 2020; 153:214114. [PMID: 33291918 DOI: 10.1063/5.0032900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We derive an electron-vibration model Hamiltonian in a quantum chemical framework and explore the extent to which such a Hamiltonian can capture key effects of nonadiabatic dynamics. The model Hamiltonian is a simple two-body operator, and we make preliminary steps at applying standard quantum chemical methods to evaluate its properties, including mean-field theory, linear response, and a primitive correlated model. The Hamiltonian can be compared to standard vibronic Hamiltonians, but it is constructed without reference to potential energy surfaces through direct differentiation of the one- and two-electron integrals at a single reference geometry. The nature of the model Hamiltonian in the harmonic and linear-coupling regime is investigated for pyrazine, where a simple time-dependent calculation including electron-vibration correlation is demonstrated to exhibit the well-studied population transfer between the S2 and S1 excited states.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Callum B A Bungey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
19
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. J Chem Phys 2020; 153:194109. [DOI: 10.1063/5.0031168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches. J Chem Phys 2020; 153:194110. [DOI: 10.1063/5.0031173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Lawrence JE, Manolopoulos DE. An improved path-integral method for golden-rule rates. J Chem Phys 2020; 153:154113. [PMID: 33092388 DOI: 10.1063/5.0022535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for the calculation of reaction rates in the Fermi golden-rule limit, which accurately captures the effects of tunneling and zero-point energy. The method is based on a modification of the recently proposed golden-rule quantum transition state theory (GR-QTST) of Thapa, Fang, and Richardson [J. Chem. Phys. 150, 104107 (2019)]. While GR-QTST is not size consistent, leading to the possibility of unbounded errors in the rate, our modified method has no such issue and so can be reliably applied to condensed phase systems. Both methods involve path-integral sampling in a constrained ensemble; the two methods differ, however, in the choice of constraint functional. We demonstrate numerically that our modified method is as accurate as GR-QTST for the one-dimensional model considered by Thapa and co-workers. We then study a multidimensional spin-boson model, for which our method accurately predicts the true quantum rate, while GR-QTST breaks down with an increasing number of boson modes in the discretization of the spectral density. Our method is able to accurately predict reaction rates in the Marcus inverted regime without the need for the analytic continuation required by Wolynes theory.
Collapse
Affiliation(s)
- Joseph E Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
22
|
Lawrence JE, Manolopoulos DE. Confirming the role of nuclear tunneling in aqueous ferrous–ferric electron transfer. J Chem Phys 2020; 153:154114. [DOI: 10.1063/5.0022678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Joseph E. Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
23
|
Sibaev M, Polyak I, Manby FR, Knowles PJ. Molecular second-quantized Hamiltonian: Electron correlation and non-adiabatic coupling treated on an equal footing. J Chem Phys 2020; 153:124102. [DOI: 10.1063/5.0018930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R. Manby
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Peter J. Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
24
|
Lawrence JE, Manolopoulos DE. A general non-adiabatic quantum instanton approximation. J Chem Phys 2020; 152:204117. [DOI: 10.1063/5.0009109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph E. Lawrence
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
25
|
Marjollet A, Welsch R. Nuclear quantum effects in state-selective scattering from ring polymer molecular dynamics. J Chem Phys 2020; 152:194113. [DOI: 10.1063/5.0004179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adrien Marjollet
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Ralph Welsch
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Pavošević F, Culpitt T, Hammes-Schiffer S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear–Electronic Orbital Method. Chem Rev 2020; 120:4222-4253. [DOI: 10.1021/acs.chemrev.9b00798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabijan Pavošević
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tanner Culpitt
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Tao X, Shushkov P, Miller TF. Microcanonical rates from ring-polymer molecular dynamics: Direct-shooting, stationary-phase, and maximum-entropy approaches. J Chem Phys 2020; 152:124117. [DOI: 10.1063/1.5144307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
28
|
Runeson JE, Richardson JO. Generalized spin mapping for quantum-classical dynamics. J Chem Phys 2020; 152:084110. [DOI: 10.1063/1.5143412] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
29
|
Abstract
Dynamics at molecule-metal interfaces are a subject of intense current interest and come in many different flavors of experiments: gas-phase scattering, chemisorption, electrochemistry, nanojunction transport, and heterogeneous catalysis, to name a few. These dynamics involve nuclear degrees of freedom entangled with many electronic degrees of freedom (in the metal), and as such there is always the possibility for nonadiabatic phenomena to appear: the nuclei do not necessarily need to move slower than the electrons to break the Born-Oppenheimer (BO) approximation. In this Feature Article, we review a set of dynamical methods developed recently to deal with such nonadiabatic phenomena at a metal surface, methods that serve as alternatives to Tully's independent electron surface hopping (IESH) model. In the weak molecule-metal coupling regime, a classical master equation (CME) can be derived and a simple surface hopping approach is proposed to propagate nuclear and electronic dynamics stochastically. In the strong molecule-metal interaction regime, a Fokker-Planck equation can be derived for the nuclear dynamics, with electronic DoFs incorporated into the overall friction and random force. Lastly, a broadened classical master equation (BCME) can interpolate between the weak and strong molecule-metal interactions. Here, we briefly review these methods and the relevant benchmarking data, showing in particular how the methods can be used to calculate nonequilibrium transport properties. We highlight several open questions and pose several avenues for future study.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Joseph E Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
30
|
Fang W, Zarotiadis RA, Richardson JO. Revisiting nuclear tunnelling in the aqueous ferrous–ferric electron transfer. Phys Chem Chem Phys 2020; 22:10687-10698. [DOI: 10.1039/c9cp06841d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We find that golden-rule quantum transition-state theory predicts nearly an order of magnitude less tunnelling than some of the previous estimates. This may indicate that the spin-boson model of electron transfer is not valid in the quantum regime.
Collapse
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| | | | | |
Collapse
|
31
|
Lawrence JE, Manolopoulos DE. An analysis of isomorphic RPMD in the golden rule limit. J Chem Phys 2019; 151:244109. [DOI: 10.1063/1.5138913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Joseph E. Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
32
|
Lawrence JE, Fletcher T, Lindoy LP, Manolopoulos DE. On the calculation of quantum mechanical electron transfer rates. J Chem Phys 2019; 151:114119. [DOI: 10.1063/1.5116800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph E. Lawrence
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Theo Fletcher
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Lachlan P. Lindoy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
33
|
Runeson JE, Richardson JO. Spin-mapping approach for nonadiabatic molecular dynamics. J Chem Phys 2019; 151:044119. [DOI: 10.1063/1.5100506] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
34
|
He X, Liu J. A new perspective for nonadiabatic dynamics with phase space mapping models. J Chem Phys 2019; 151:024105. [DOI: 10.1063/1.5108736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Chowdhury SN, Huo P. State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics. J Chem Phys 2019; 150:244102. [DOI: 10.1063/1.5096276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sutirtha N. Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
36
|
Kaur R, Welsch R. Probing photodissociation dynamics using ring polymer molecular dynamics. J Chem Phys 2019; 150:114105. [PMID: 30901996 DOI: 10.1063/1.5086218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The performance of the ring polymer molecular dynamics (RPMD) approach to simulate typical photodissociation processes is assessed. The correct description of photodissociation requires the calculation of correlation functions or expectation values associated with non-equilibrium initial conditions, which was shown to be possible with RPMD very recently [J. Chem. Phys. 145, 204118 (2016)]. This approach is combined with treatment of the nonadiabatic dynamics employing the ring polymer surface hopping approach (RPSH), which is based on Tully's fewest switches surface hopping (FSSH) approach. The performance is tested using one-dimensional photodissociation models. It is found that RPSH with non-equilibrium initial conditions can well reproduce the time-dependent dissociation probability, and adiabatic and diabatic populations for cases where the crossing point is below and above the Franck-Condon point, respectively, while standard FSSH fails to reproduce the exact quantum dynamics in the latter case. Thus, it is shown that RPSH is an efficient and accurate alternative to standard FSSH, which is one of the most widely employed approaches to study photochemistry.
Collapse
Affiliation(s)
- Rajwant Kaur
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ralph Welsch
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
37
|
Thapa MJ, Fang W, Richardson JO. Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems. J Chem Phys 2019; 150:104107. [DOI: 10.1063/1.5081108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manish J. Thapa
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Wei Fang
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
38
|
Mandal A, Sandoval C. JS, Shakib FA, Huo P. Quasi-Diabatic Propagation Scheme for Direct Simulation of Proton-Coupled Electron Transfer Reaction. J Phys Chem A 2019; 123:2470-2482. [DOI: 10.1021/acs.jpca.9b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Juan S. Sandoval C.
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Farnaz A. Shakib
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
39
|
Tao X, Shushkov P, Miller TF. Simple Flux-Side Formulation of State-Resolved Thermal Reaction Rates for Ring-Polymer Surface Hopping. J Phys Chem A 2019; 123:3013-3020. [DOI: 10.1021/acs.jpca.9b00877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
40
|
Saller MAC, Kelly A, Richardson JO. On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics. J Chem Phys 2019; 150:071101. [DOI: 10.1063/1.5082596] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Aaron Kelly
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
41
|
Schile AJ, Limmer DT. Studying rare nonadiabatic dynamics with transition path sampling quantum jump trajectories. J Chem Phys 2018; 149:214109. [DOI: 10.1063/1.5058281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Addison J. Schile
- Department of Chemistry, University of California, Berkeley, California 94618, USA
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94618, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94618, USA
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94618, USA
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94618, USA
| |
Collapse
|
42
|
Abstract
Electronic friction is a correction to the Born-Oppenheimer approximation, whereby nuclei in motion experience a drag in the presence of a manifold of electronic states. The notion of electronic friction has a long history and has been (re-)discovered in the context of a wide variety of different chemical and physical systems including, but not limited to, surface scattering events, surface reactions or chemisorption, electrochemistry, and conduction through molecular-(or nano-) junctions. Over the years, quite a few different forms of electronic friction have been offered in the literature. In this perspective, we briefly review these developments of electronic friction, highlighting the fact that we can now isolate a single, unifying form for (Markovian) electronic friction. We also focus on the role of electron-electron interactions for understanding frictional effects and offer our thoughts on the strengths and weaknesses of using electronic friction to model dynamics in general.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
43
|
Tuckerman M, Ceperley D. Preface: Special Topic on Nuclear Quantum Effects. J Chem Phys 2018; 148:102001. [DOI: 10.1063/1.5026714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Mark Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - David Ceperley
- Department of Physics, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|