1
|
Noirat DB, Frick B, Jakobsen B, Appel M, Niss K. Density scaling and isodynes in glycerol-water mixtures. Phys Chem Chem Phys 2024; 26:29003-29014. [PMID: 39552335 DOI: 10.1039/d4cp02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This paper presents dielectric and neutron spectroscopy data on two different glycerol-water mixtures at elevated pressures. Glycerol-water liquid mixtures have a high concentration of hydrogen bonds which usually is expected to lead to complex dynamics. However, with regard to the pressure dependence of the dynamics we reveal a surprisingly simple picture. Different aspects of the dynamics have the same pressure dependence, in other words the phase diagram of the liquids have so-called isodynes, density scaling is also observed to hold reasonably well and there is even some reminiscence of isochronal superposition. This suggests that these aspect of liquid dynamics are very general and hold for different types of intermolecular interactions.
Collapse
Affiliation(s)
- David B Noirat
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bo Jakobsen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
| | - Markus Appel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Kristine Niss
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
| |
Collapse
|
2
|
Papadakis CM, Niebuur BJ, Schulte A. Thermoresponsive Polymers under Pressure with a Focus on Poly( N-isopropylacrylamide) (PNIPAM). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1-20. [PMID: 38149782 DOI: 10.1021/acs.langmuir.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps. In the prototype system poly(N-isopropylacrylamide) (PNIPAM), QENS revealed the pressure-dependent characteristics of hydration water around the lower critical solution temperature transition. The size, water content, and inner structure of the mesoglobules formed in the two-phase region depend strongly on pressure, as shown by SANS. Beside these changes at the phase transition, the mesoglobule formation at low pressure is determined by kinetic factors, namely the formation of a polymer-rich, rigid shell, which hampers further growth by coalescence. At high pressure, in contrast, the growth proceeds by diffusion-limited coalescence without any kinetic hindrance. The disintegration of the mesoglobules evolves either via chain release from their surface or via swelling, depending on the osmotic pressure of the water. Moreover, we report on the profound influence of pressure on the cononsolvency effect. In the temperature-pressure frame, the one-phase region is hugely expanded upon the addition of the cosolvent methanol. SANS experiments unveil the enthalpic and entropic contributions to the effective Flory-Huggins interaction parameter between the segments and the solvent mixture. QENS experiments demonstrate an increase in polymer associated water with pressure, whereas methanol is released. Correspondingly, the solvent phase becomes enriched in methanol, providing a mechanism for the breakdown of cononsolvency at a high pressure. Finally, we outline future opportunities for high-pressure studies of thermoresponsive polymers, with a focus on neutron methods.
Collapse
Affiliation(s)
- Christine M Papadakis
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| |
Collapse
|
3
|
Chan YT, Uykur E, Dressel M. Radio frequency dielectric measurements in diamond anvil cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023905. [PMID: 36859038 DOI: 10.1063/5.0130870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We present the modifications, performance, and test of a diamond anvil cell for radio frequency dielectric spectroscopy studies of single crystals that can be used from room temperature down to 4 K and up to pressures of 5-6 GPa. Continuous frequency-dependent measurements between 5 Hz and 1 MHz can be performed with this modified pressure cell. The cell has an excellent performance with temperature-, frequency-, and pressure-independent stray capacitance of around 2 pF, enabling us to use relatively small samples with a weak dielectric response.
Collapse
Affiliation(s)
- Yuk Tai Chan
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ece Uykur
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Martin Dressel
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Michel L, Ludescher L, Cristiglio V, Charlaix E, Paris O, Picard C. Bowtie-Shaped Deformation Isotherm of Superhydrophobic Cylindrical Mesopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:211-220. [PMID: 34964631 DOI: 10.1021/acs.langmuir.1c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deformation of superhydrophobic cylindrical mesopores is studied during a cycle of forced water filling and spontaneous drying by in situ small-angle neutron scattering. A high-pressure setup is put forward to characterize the deformation of ordered mesoporous silanized silica up to 80 MPa. Strain isotherms of individual pores are deduced from the shift of the Bragg spectrum associated with the deformation of the hexagonal pore lattice. Due to their superhydrophobic nature, pore walls are not covered with a prewetting film. This peculiarity gives the ability to use a simple mechanical model to describe both filled and empty pore states without the pitfall of disjoining pressure effects. By fitting our experimental data with this model, we measure both the Young's modulus and the Poisson ratio of the nanometric silica wall. The measurement of this latter parameter constitutes a specificity offered by superhydrophobic nanopores with respect to hydrophilic ones.
Collapse
Affiliation(s)
- Loïc Michel
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Lukas Ludescher
- Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
| | | | | | - Oskar Paris
- Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
| | - Cyril Picard
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
5
|
Frick B, Fomina M, Noirat D, Hansen HW, Appel M, Niss K. A sample holder for simultaneous neutron and dielectric spectroscopy – dielectric tests with glycerol, glycerol-water, water and phosphoric acid. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227202006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on dielectric test measurements of a rectangular flat sample holder which serves as capacitor and which is aimed for simultaneous neutron and dielectric (n-DE) spectroscopy of acidic liquid samples. We describe technical details of the sample holder assembly and the dielectric and neutron equipment as well as the sample preparation procedure of the air sensitive acidic samples. The sample holder was characterised off-line from the neutron spectrometer by dielectric spectroscopy, but using the standard IN16B cryofurnace with a dielectric sample stick with 4-wire connection and a Novocontrol equipment, previously setup by a collaborative effort between ILL and Roskilde University. Temperature-dependent dielectric scans on standard samples (glycerol, glycerol-water, and Milli-Q water) were measured in the frequency range between 0.27 Hz and 1 MHz. Step-like temperature changes allowed to probe the temperature equilibrium conditions and continuous temperature changes were made to mimic typical IN16B backscattering neutron fixed window scans. Both type of scans were carried out in cooling and in heating. The standard samples show that our dielectric setup with flat sample holder is well suited for simultaneous n-DE-experiments. On the other hand, the dielectric scan on phosphoric acid reveals the limitations of our setup in case of high sample conductivities, but also shows that the DC-conductivity can still be accessed in a sufficiently wide low temperature range where the onset of conductivity can be simultaneously probed with the change in proton dynamics as seen by neutron spectroscopy.
Collapse
|
6
|
Benedetto A, Kearley GJ. Experimental demonstration of the novel "van-Hove integral method (vHI)" for measuring diffusive dynamics by elastic neutron scattering. Sci Rep 2021; 11:14093. [PMID: 34238981 PMCID: PMC8266890 DOI: 10.1038/s41598-021-93463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Quasi-elastic neutron scattering (QENS)-based on the seminal work of Nobel Laureate Brockhouse-has been one of the major methods for studying pico-second to nano-second diffusive dynamics over the past 70 years. This is regarded as an "inelastic" method for dynamics. In contrast, we recently proposed a new neutron-scattering method for dynamics, which uses the elastic line of the scattering to access system dynamics directly in the time domain (Benedetto and Kearley in Sci Rep 9:11284, 2019). This new method has been denoted "vHI" that stands for "van Hove Integral". The reason is that, under certain conditions, the measured elastic intensity corresponds to the running-time integral of the intermediate scattering function, [Formula: see text], up to a time that is inversely proportional to the energy band-width incident on the sample. As a result, [Formula: see text] is accessed from the time derivative of the measured vHI profile. vHI has been supported by numerical and Monte-Carlo simulations, but has been difficult to validate experimentally due to the lack of a suitable instrument. Here we show that vHI works in practice, which we achieved by using a simple modification to the standard QENS backscattering spectrometer methodology. Basically, we varied the neutron-energy band-widths incident at the sample via a step-wise variation of the frequency of the monochromator Doppler-drive. This provides a measurement of the vHI profile at the detectors. The same instrument and sample were also used in standard QENS mode for comparison. The intermediate scattering functions, [Formula: see text], obtained by the two methods-vHI and QENS-are strikingly similar providing a direct experimental validation of the vHI method. Perhaps surprisingly, the counting statistics of the two methods are comparable even though the instrument used was expressly designed for QENS. This shows that the methodology modification adopted here can be used in practice to access vHI profiles at many of the backscattering spectrometers worldwide. We also show that partial integrations of the measured QENS spectrum cannot provide the vHI profile, which clarifies a common misconception. At the same time, we show a novel approach which does access [Formula: see text] from QENS spectra.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute, University College Dublin, Dublin 4, Ireland.
- Department of Sciences, University of Roma Tre, Rome, Italy.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland.
| | - Gordon J Kearley
- School of Physics, University College Dublin, Dublin 4, Ireland
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
7
|
Lundin F, Hansen HW, Adrjanowicz K, Frick B, Rauber D, Hempelmann R, Shebanova O, Niss K, Matic A. Pressure and Temperature Dependence of Local Structure and Dynamics in an Ionic Liquid. J Phys Chem B 2021; 125:2719-2728. [PMID: 33656344 PMCID: PMC8034775 DOI: 10.1021/acs.jpcb.1c00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
A detailed understanding
of the local dynamics in ionic liquids
remains an important aspect in the design of new ionic liquids as
advanced functional fluids. Here, we use small-angle X-ray scattering
and quasi-elastic neutron spectroscopy to investigate the local structure
and dynamics in a model ionic liquid as a function of temperature
and pressure, with a particular focus on state points (P,T) where the macroscopic dynamics, i.e., conductivity,
is the same. Our results suggest that the initial step of ion transport
is a confined diffusion process, on the nanosecond timescale, where
the motion is restricted by a cage of nearest neighbors. This process
is invariant considering timescale, geometry, and the participation
ratio, at state points of constant conductivity, i.e., state points
of isoconductivity. The connection to the nearest-neighbor structure
is underlined by the invariance of the peak in the structure factor
corresponding to nearest-neighbor correlations. At shorter timescales,
picoseconds, two localized relaxation processes of the cation can
be observed, which are not directly linked to ion transport. However,
these processes also show invariance at isoconductivity. This points
to that the overall energy landscape in ionic liquids responds in
the same way to density changes and is mainly governed by the nearest-neighbor
interactions.
Collapse
Affiliation(s)
- Filippa Lundin
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Henriette Wase Hansen
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.,Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark.,Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Karolina Adrjanowicz
- Insitute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Daniel Rauber
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Hempelmann
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | | | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Aleksandar Matic
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
8
|
Pounot K, Chaaban H, Foderà V, Schirò G, Weik M, Seydel T. Tracking Internal and Global Diffusive Dynamics During Protein Aggregation by High-Resolution Neutron Spectroscopy. J Phys Chem Lett 2020; 11:6299-6304. [PMID: 32663030 DOI: 10.1021/acs.jpclett.0c01530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proteins can misfold and form either amorphous or organized aggregates with different morphologies and features. Aggregates of amyloid nature are pathological hallmarks in so-called protein conformational diseases, including Alzheimer's and Parkinson's. Evidence prevails that the transient early phases of the reaction determine the aggregate morphology and toxicity. As a consequence, real-time monitoring of protein aggregation is of utmost importance. Here, we employed time-resolved neutron backscattering spectroscopy to follow center-of-mass self-diffusion and nano- to picosecond internal dynamics of lysozyme during aggregation into a specific β-sheet rich superstructure, called particulates, formed at the isoelectric point of the protein. Particulate formation is found to be a one-step process, and protein internal dynamics, to remain unchanged during the entire aggregation process. The time-resolved neutron backscattering spectroscopy approach developed here, in combination with standard kinetics assays, provides a unifying framework in which dynamics and conformational transitions can be related to the different aggregation pathways.
Collapse
Affiliation(s)
- Kevin Pounot
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble cedex 9, France
| | - Hussein Chaaban
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble cedex 9, France
| |
Collapse
|
9
|
Soccio M, Martínez-Tong DE, Guidotti G, Robles-Hernández B, Munari A, Lotti N, Alegria A. Broadband Dielectric Spectroscopy Study of Biobased Poly(alkylene 2,5-furanoate)s' Molecular Dynamics. Polymers (Basel) 2020; 12:E1355. [PMID: 32560215 PMCID: PMC7361705 DOI: 10.3390/polym12061355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Poly(2,5-alkylene furanoate)s are bio-based, smart, and innovative polymers that are considered the most promising materials to replace oil-based plastics. These polymers can be synthesized using ecofriendly approaches, starting from renewable sources, and result into final products with properties comparable and even better than those presented by their terephthalic counterparts. In this work, we present the molecular dynamics of four 100% bio-based poly(alkylene 2,5-furanoate)s, using broadband dielectric spectroscopy measurements that covered a wide temperature and frequency range. We unveiled complex local relaxations, characterized by the simultaneous presence of two components, which were dependent on thermal treatment. The segmental relaxation showed relaxation times and strengths depending on the glycolic subunit length, which were furthermore confirmed by high-frequency experiments in the molten region of the polymers. Our results allowed determining structure-property relations that are able to provide further understanding about the excellent barrier properties of poly(alkylene 2,5-furanoate)s. In addition, we provide results of high industrial interest during polymer processing for possible industrial applications of poly(alkylene furanoate)s.
Collapse
Affiliation(s)
- Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Daniel E. Martínez-Tong
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Angel Alegria
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
10
|
Hansen HW, Lundin F, Adrjanowicz K, Frick B, Matic A, Niss K. Density scaling of structure and dynamics of an ionic liquid. Phys Chem Chem Phys 2020; 22:14169-14176. [DOI: 10.1039/d0cp01258k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The lines in the pressure–temperature phase diagram with constant conductivity are found to be lines where other dynamic variables as well as the molecular structure factor peak are constant, while charge ordering changes.
Collapse
Affiliation(s)
- Henriette Wase Hansen
- Glass and Time
- IMFUFA
- Department of Science and Environment
- Roskilde University
- DK-4000 Roskilde
| | - Filippa Lundin
- Materials Physics
- Department of Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | | | | | - Aleksandar Matic
- Materials Physics
- Department of Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Kristine Niss
- Glass and Time
- IMFUFA
- Department of Science and Environment
- Roskilde University
- DK-4000 Roskilde
| |
Collapse
|
11
|
Ashkar R, Bilheux HZ, Bordallo H, Briber R, Callaway DJE, Cheng X, Chu XQ, Curtis JE, Dadmun M, Fenimore P, Fushman D, Gabel F, Gupta K, Herberle F, Heinrich F, Hong L, Katsaras J, Kelman Z, Kharlampieva E, Kneller GR, Kovalevsky A, Krueger S, Langan P, Lieberman R, Liu Y, Losche M, Lyman E, Mao Y, Marino J, Mattos C, Meilleur F, Moody P, Nickels JD, O'Dell WB, O'Neill H, Perez-Salas U, Peters J, Petridis L, Sokolov AP, Stanley C, Wagner N, Weinrich M, Weiss K, Wymore T, Zhang Y, Smith JC. Neutron scattering in the biological sciences: progress and prospects. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1129-1168. [PMID: 30605130 DOI: 10.1107/s2059798318017503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful.
Collapse
Affiliation(s)
- Rana Ashkar
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - Hassina Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Robert Briber
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - David J E Callaway
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Xiaolin Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| | - Xiang Qiang Chu
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Paul Fenimore
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Frank Gabel
- Institut Laue-Langevin, Université Grenoble Alpes, CEA, CNRS, IBS, 38042 Grenoble, France
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick Herberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Frank Heinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Liang Hong
- Department of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - John Katsaras
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, AL 35294, USA
| | - Gerald R Kneller
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, Chateau de la Source, Avenue du Parc Floral, Orléans, France
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Paul Langan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Raquel Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yun Liu
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mathias Losche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, DE 19716, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Peter Moody
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, England
| | - Jonathan D Nickels
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - William B O'Dell
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Hugh O'Neill
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Ursula Perez-Salas
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Loukas Petridis
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Christopher Stanley
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Norman Wagner
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Michael Weinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Kevin Weiss
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Troy Wymore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Yang Zhang
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Jeremy C Smith
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Hansen HW, Frick B, Capaccioli S, Sanz A, Niss K. Isochronal superposition and density scaling of the α-relaxation from pico- to millisecond. J Chem Phys 2018; 149:214503. [DOI: 10.1063/1.5055665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Henriette Wase Hansen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Simone Capaccioli
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Alejandro Sanz
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
13
|
Rösslhuber R, Uykur E, Dressel M. Pressure cell for radio-frequency dielectric measurements at low temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:054708. [PMID: 29864800 DOI: 10.1063/1.5030847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the design, test, and performance of a piston type pressure cell for low-temperature dielectric measurements up to 10 kbar with particular emphasis on the electrical feedthrough for four coaxial cables and four conventional copper wires. The coaxial cables provide proper shielding of the applied test signal; a commercial continuous flow cryostat allows us to minimize the total cable length enabling temperature and pressure-dependent dielectric spectroscopy measurements down to 8 K and up to 5 MHz. We performed open compensation measurements, i.e., background measurements of the response originating from the pressure setup without a sample, to obtain its high frequency characteristics. The stray capacitance of the pressure setup is determined as Cstray = 40 fF, making it possible to measure small single crystals with a weak dielectric response. The proper operation is verified by comparing measurements of a test sample in the pressure setup at ambient pressure and in a standard dielectric spectroscopy setup.
Collapse
Affiliation(s)
- R Rösslhuber
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - E Uykur
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - M Dressel
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|