Mostarac D, Novak EV, Kantorovich SS. Relating the length of a magnetic filament with solvophobic, superparamagnetic colloids to its properties in applied magnetic fields.
Phys Rev E 2023;
108:054601. [PMID:
38115450 DOI:
10.1103/physreve.108.054601]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 12/21/2023]
Abstract
The idea of creating polymer-like structures by crosslinking magnetic nanoparticles (MNPs) opened an alternative perspective on controlling the rheological properties of magnetoresponsive systems, because unlike suspensions of self-assembled MNPs, whose cluster sizes are sensitive to temperature, magnetic filaments (MFs) preserve their initial topology. Considering the length scales characteristic of single-domain nanoparticles used to create MFs, the MNPs can be both ferro- and superparamagnetic. Moreover, steric or electrostatic stabilization might not fully screen van der Waals interactions. In this paper, using coarse-grained molecular dynamics simulations, we investigate the influence of susceptibility of superparamagnetic MNPs-their number and central attraction forces between them-on the polymeric, structural, and magnetic properties of MFs with varied backbone rigidity. We find that, due to the general tendency of MFs with superparamagnetic monomers to bend, reinforced for colloids with a high susceptibility, properties of MFs vary greatly with chain length.
Collapse