1
|
Kjønstad EF, Angelico S, Koch H. Coupled Cluster Theory for Nonadiabatic Dynamics: Nuclear Gradients and Nonadiabatic Couplings in Similarity Constrained Coupled Cluster Theory. J Chem Theory Comput 2024; 20. [PMID: 39137322 PMCID: PMC11360132 DOI: 10.1021/acs.jctc.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 08/15/2024]
Abstract
Coupled cluster theory is one of the most accurate electronic structure methods for predicting ground and excited state chemistry. However, the presence of numerical artifacts at electronic degeneracies, such as complex energies, has made it difficult to apply the method in nonadiabatic dynamics simulations. While it has already been shown that such numerical artifacts can be fully removed by using similarity constrained coupled cluster (SCC) theory [J. Phys. Chem. Lett. 2017, 8(19), 4801-4807], simulating dynamics requires efficient implementations of gradients and nonadiabatic couplings. Here, we present an implementation of nuclear gradients and nonadiabatic derivative couplings at the similarity constrained coupled cluster singles and doubles (SCCSD) level of theory, thereby making possible nonadiabatic dynamics simulations using a coupled cluster theory that provides a correct description of conical intersections between excited states. We present a few numerical examples that show good agreement with literature values and discuss some limitations of the method.
Collapse
Affiliation(s)
- Eirik F. Kjønstad
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Sara Angelico
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Henrik Koch
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| |
Collapse
|
2
|
Hait D, Lahana D, Fajen OJ, Paz ASP, Unzueta PA, Rana B, Lu L, Wang Y, Kjønstad EF, Koch H, Martínez TJ. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. J Chem Phys 2024; 160:244101. [PMID: 38912674 DOI: 10.1063/5.0203800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Abstract
Simulations of photochemical reaction dynamics have been a challenge to the theoretical chemistry community for some time. In an effort to determine the predictive character of current approaches, we predict the results of an upcoming ultrafast diffraction experiment on the photodynamics of cyclobutanone after excitation to the lowest lying Rydberg state (S2). A picosecond of nonadiabatic dynamics is described with ab initio multiple spawning. We use both time dependent density functional theory (TDDFT) and equation-of-motion coupled cluster singles and doubles (EOM-CCSD) theory for the underlying electronic structure theory. We find that the lifetime of the S2 state is more than a picosecond (with both TDDFT and EOM-CCSD). The predicted ultrafast electron diffraction spectrum exhibits numerous structural features, but weak time dependence over the course of the simulations.
Collapse
Affiliation(s)
- Diptarka Hait
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Dean Lahana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - O Jonathan Fajen
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Amiel S P Paz
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Pablo A Unzueta
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Lixin Lu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Yuanheng Wang
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Eirik F Kjønstad
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| |
Collapse
|
3
|
Wang Y, Mazziotti DA. Quantum simulation of conical intersections. Phys Chem Chem Phys 2024; 26:11491-11497. [PMID: 38587679 DOI: 10.1039/d4cp00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We explore the simulation of conical intersections (CIs) on quantum devices, setting the groundwork for potential applications in nonadiabatic quantum dynamics within molecular systems. The intersecting potential energy surfaces of H3+ are computed from a variance-based contracted quantum eigensolver. We show how the CIs can be correctly described on quantum devices using wavefunctions generated by the anti-Hermitian contracted Schrödinger equation ansatz, which is a unitary transformation of wavefunctions that preserves the topography of CIs. A hybrid quantum-classical procedure is used to locate the seam of CIs. Additionally, we discuss the quantum implementation of the adiabatic to diabatic transformation and its relation to the geometric phase effect. Results on noisy intermediate-scale quantum devices showcase the potential of quantum computers in dealing with problems in nonadiabatic chemistry.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
4
|
Izu AE, Matxain JM, Casanova D. Reverse intersystem crossing mechanisms in doped triangulenes. Phys Chem Chem Phys 2024; 26:11459-11468. [PMID: 38563957 DOI: 10.1039/d4cp00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Thermally activated delayed fluorescence (TADF) has emerged as one of the most promising strategies in the quest for organic light emitting diodes with optimal performance. This computational study dissects the mechanistic intricacies of the central photophysical step, reverse intersystem crossing (rISC) in N and B doped triangulenes as potential multi-resonance TADF compounds. Optimal molecular patterns conducive to efficient rISC, encompassing dopant atom size, number, and distribution, are identified. Additionally, we assess various electronic structure methods for characterizing TADF-relevant molecular systems. The findings identify the distinct role of the direct and mediated mechanisms in rISC, and provide insights into the design of advanced TADF chromophores for next-generation OLED technology.
Collapse
Affiliation(s)
- Asier E Izu
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Jon M Matxain
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
5
|
Bao S, Raymond N, Nooijen M. Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics. J Chem Phys 2024; 160:094105. [PMID: 38426527 DOI: 10.1063/5.0190034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born-Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV-VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].
Collapse
Affiliation(s)
- Songhao Bao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Neil Raymond
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Vandaele E, Mališ M, Luber S. A Local Diabatisation Method for Two-State Adiabatic Conical Intersections. J Chem Theory Comput 2024; 20:856-872. [PMID: 38174710 DOI: 10.1021/acs.jctc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A methodology to locally characterize conical intersections (CIs) between two adiabatic electronic states for which no nonadiabatic coupling (NAC) vectors are available is presented. Based on the Hessian and gradient at the CI, the branching space coordinates are identified. The potential energy surface around the CI in the branching space is expressed in the diabatic representation, from which the NAC vectors can be calculated in a wave-function-free, energy-based approach. To demonstrate the universality of the developed methodology, the minimum-energy CI (MECI) between the first (S1) and second (S2) singlet excited states of formamide is investigated at the state-averaged complete active space self-consistent field (SA-CASSCF) and extended multistate complete active space second-order perturbation theory (XMS-CASPT2) levels of theory. In addition, the asymmetrical MECI between the ground state (S0) and S1 of cyclopropanone is evaluated using SA-CASSCF, as well as (ME)CIs between the S1 and S2 states of benzene using SA-CASSCF and time-dependent density functional theory (TDDFT). Finally, a CI between the S1 and S2 excited states of thiophene was analyzed using TDDFT.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Coe JP. Analytic Non-adiabatic Couplings for Selected Configuration Interaction via Approximate Degenerate Coupled Perturbed Hartree-Fock. J Chem Theory Comput 2023; 19:8053-8065. [PMID: 37939698 PMCID: PMC10687870 DOI: 10.1021/acs.jctc.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
We use degenerate perturbation theory and assume that for degenerate pairs of orbitals, the coupled perturbed Hartree-Fock coefficients are symmetric in the degenerate basis to show [Formula: see text] is the only modification needed in the original molecular orbital basis. This enables us to develop efficient and accurate analytic nonadiabatic couplings between electronic states for selected configuration interactions (CIs). Even when the states belong to different irreducible representations, degenerate orbital pairs cannot be excluded by symmetry. For various excited states of carbon monoxide and trigonal planar ammonia, we benchmark the method against the full CI and find it to be accurate. We create a semi-numerical approach and use it to show that the analytic approach is correct even when a high-symmetry structure is distorted to break symmetry so that near degeneracies in orbitals occur. For a range of geometries of trigonal planar ammonia, we find that the analytic non-adiabatic couplings for selected CI can achieve sufficient accuracy using a small fraction of the full CI space.
Collapse
Affiliation(s)
- Jeremy P. Coe
- Institute of Chemical Sciences, School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
8
|
Dillon AD, Gieseking RLM. Convergence of Time-Derivative Nonadiabatic Couplings in Plane-Wave DFT Calculations. J Phys Chem A 2023; 127:9612-9620. [PMID: 37924298 DOI: 10.1021/acs.jpca.3c04858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Accurate prediction of charge carrier relaxation rates is essential to design molecules and materials with the desired photochemical properties for applications like photocatalysis and solar energy conversion. Nonadiabatic molecular dynamics allows one to simulate the relaxation process of excited charge carriers. Plane-wave density functional theory (DFT) calculations make the time-derivative nonadiabatic couplings (TNACs) simple to compute because the basis is independent of the atomic positions. However, the effect of the kinetic energy cutoff for the plane-wave basis on the accuracy of the dynamics has not been studied. Here, we examine the effect of the kinetic energy cutoff on the TNACs and decay time scales for the prototypical model system of tetracene. These calculations show that the choice of kinetic energy cutoff can change the relaxation time by up to 30%. The relaxation times of states that have small TNACs to other states or are far from degenerate are more sensitive to the kinetic energy cutoff than those of states with large TNACs or near degeneracies. A kinetic energy cutoff of 60 Ry is sufficient for all states to reach semiquantitative agreement (absolute error <10%) with the decay times of our 110 Ry reference data, and a cutoff of 80 Ry is required for all states to reach quantitative agreement (absolute error <2%).
Collapse
Affiliation(s)
- Alva D Dillon
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Rebecca L M Gieseking
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
Chatterjee K, Koczor-Benda Z, Feng X, Krylov AI, Jagau TC. Analytic Evaluation of Nonadiabatic Couplings within the Complex Absorbing Potential Equation-of-Motion Coupled-Cluster Method. J Chem Theory Comput 2023; 19:5821-5834. [PMID: 37647100 DOI: 10.1021/acs.jctc.3c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We present the theory for the evaluation of nonadiabatic couplings (NACs) involving resonance states within the complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC) framework implemented within the singles and doubles approximation. Resonance states are embedded in the continuum and undergo rapid decay through autodetachment. In addition, nuclear motion can facilitate transitions between different resonances and between resonances and bound states. These nonadiabatic transitions affect the chemical fate of resonances and have distinct spectroscopic signatures. The NAC vector is a central quantity needed to model such effects. In the CAP-EOM-CC framework, resonance states are treated on the same footing as bound states. Using the example of fumaronitrile, which supports a bound radical anion and several anionic resonances, we analyze the NAC between bound states and pseudocontinuum states, between bound states and resonances, and between two resonances. We find that the NAC between a bound state and a resonance is nearly independent of the CAP strength and thus straightforward to evaluate, whereas the NAC between two resonance states or between a bound state and a pseudocontinuum state is more difficult to evaluate.
Collapse
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | - Xintian Feng
- Q-Chem, Inc., 6601 Owens Drive, Suite 240, Pleasanton, California 94588, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas-C Jagau
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
10
|
Bridgers A, Urquilla JA, Im J, Petit AS. Theoretical Study of the Photochemical Mechanisms of the Electronic Quenching of NO( A2Σ +) with CH 4, CH 3OH, and CO 2. J Phys Chem A 2023; 127:7228-7240. [PMID: 37552562 PMCID: PMC10476188 DOI: 10.1021/acs.jpca.3c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Indexed: 08/10/2023]
Abstract
The electronic quenching of NO(A2Σ+) with molecular partners occurs through complex non-adiabatic dynamics that occurs on multiple coupled potential energy surfaces. Moreover, the propensity for NO(A2Σ+) electronic quenching depends heavily on the strength and nature of the intermolecular interactions between NO(A2Σ+) and the molecular partner. In this paper, we explore the electronic quenching mechanisms of three systems: NO(A2Σ+) + CH4, NO(A2Σ+) + CH3OH, and NO(A2Σ+) + CO2. Using EOM-EA-CCSD calculations, we rationalize the very low electronic quenching cross-section of NO(A2Σ+) + CH4 as well as the outcomes observed in previous NO + CH4 photodissociation studies. Our analysis of NO(A2Σ+) + CH3OH suggests that it will undergo facile electronic quenching mediated by reducing the intermolecular distance and significantly stretching the O-H bond of CH3OH. For NO(A2Σ+) + CO2, intermolecular attractions lead to a series of low-energy ON-OCO conformations in which the CO2 is significantly bent. For both the NO(A2Σ+) + CH3OH and NO(A2Σ+) + CO2 systems, we see evidence of the harpoon mechanism and low-energy conical intersections between NO(A2Σ+) + M and NO(X2Π) + M. Overall, this work provides the first detailed theoretical study on the NO(A2Σ+) + M potential energy surface of each of these systems and will inform future velocity map imaging experiments.
Collapse
Affiliation(s)
- Aerial
N. Bridgers
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| | - Justin A. Urquilla
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| | - Julia Im
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| |
Collapse
|
11
|
Reja D, Kumar S. He + +N 2 Charge Transfer Reaction: An Ab initio Analysis. Chemphyschem 2023; 24:e202200880. [PMID: 37071387 DOI: 10.1002/cphc.202200880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
An ab initio analysis on the involved potential energy surfaces is presented for the investigation of the charge transfer mechanism for the He+ +N2 system. At high collision energy, as many as seven low-lying electronic states are observed to be involved in the charge transfer mechanism. Potential energy surfaces for these low-lying electronic states have been computed in the Jacobi scattering coordinates, applying multireference configuration interaction level of theory and aug-cc-pVQZ basis sets. Asymptotes for the ground and various excited states are assigned to mark the entrance (He+ +N2 ) and charge transfer channels (He+N2 + ). Nonadiabatic coupling matrix elements and quasi-diabatic potential energy surfaces have been computed for all seven states to rationalize the available experimental data on the charge transfer processes and to facilitate dynamics studies.
Collapse
Affiliation(s)
- Deboki Reja
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sanjay Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
12
|
Littlejohn R, Rawlinson J, Subotnik J. Representation and conservation of angular momentum in the Born-Oppenheimer theory of polyatomic molecules. J Chem Phys 2023; 158:104302. [PMID: 36922131 DOI: 10.1063/5.0143809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
This paper concerns the representation of angular momentum operators in the Born-Oppenheimer theory of polyatomic molecules and the various forms of the associated conservation laws. Topics addressed include the question of whether these conservation laws are exactly equivalent or only to some order of the Born-Oppenheimer parameter κ = (m/M)1/4 and what the correlation is between angular momentum quantum numbers in the various representations. These questions are addressed in both problems involving a single potential energy surface and those with multiple, strongly coupled surfaces and in both the electrostatic model and those for which fine structure and electron spin are important. The analysis leads to an examination of the transformation laws under rotations of the electronic Hamiltonian; of the basis states, both adiabatic and diabatic, along with their phase conventions; of the potential energy matrix; and of the derivative couplings. These transformation laws are placed in the geometrical context of the structures in the nuclear configuration space that are induced by rotations, which include the rotational orbits or fibers, the surfaces upon which the orientation of the molecule changes but not its shape, and the section, an initial value surface that cuts transversally through the fibers. Finally, it is suggested that the usual Born-Oppenheimer approximation can be replaced by a dressing transformation, that is, a sequence of unitary transformations that block-diagonalize the Hamiltonian. When the dressing transformation is carried out, we find that the angular momentum operator does not change. This is a part of a system of exact equivalences among various representations of angular momentum operators in Born-Oppenheimer theory. Our analysis accommodates large-amplitude motions and is not dependent on small-amplitude expansions about an equilibrium position. Our analysis applies to noncollinear configurations of a polyatomic molecule; this covers all but a subset of measure zero (the collinear configurations) in the nuclear configuration space.
Collapse
Affiliation(s)
- Robert Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Jonathan Rawlinson
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Huang X, Pei Z, Liang W. Analytical derivative couplings within the framework of time-dependent density functional theory coupled with conductor-like polarizable continuum model: Formalism, implementation, and applications. J Chem Phys 2023; 158:044122. [PMID: 36725492 DOI: 10.1063/5.0130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The nonadiabatic phenomena, which are characterized by a strong coupling between electronic and nuclear motions, are ubiquitous. The nonadiabatic effect of the studied system can be significantly affected by the surrounding environment, such as solvents, in which such nonadiabatic process takes place. It is essential to develop the theoretical models to simulate these processes while accurately modeling the solvent environment. The time-dependent density functional theory (TDDFT) is currently the most efficient approach to describe the electronic structures and dynamics of complex systems, while the polarizable continuum model (PCM) represents one of the most successful examples among continuum solvation models. Here, we formulate the first-order derivative couplings (DCs) between the ground and excited states as well as between two excited states by utilizing time-independent equation of motion formalism within the framework of both linear response and spin flip formulations of TDDFT/CPCM (the conductor-like PCM), and implement the analytical DCs into the Q-CHEM electronic structure software package. The analytic implementation is validated by the comparison of the analytical and finite-difference results, and reproducing geometric phase effect in the protonated formaldimine test case. Taking 4-(N,N-dimethylamino)benzonitrile and uracil in the gas phase and solution as an example, we demonstrate that the solvent effect is essential not only for the excitation energies of the low-lying excited-states but also for the DCs between these states. Finally, we calculate the internal conversion rate of benzophenone in a solvent with DC being used. The current implementation of analytical DCs together with the existing analytical gradient and Hessian of TDDFT/PCM excited states allows one to study the nonadiabatic effects of relatively large systems in solutions with low computational cost.
Collapse
Affiliation(s)
- Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
14
|
Manian A, Hudson RJ, Ramkissoon P, Smith TA, Russo SP. Interexcited State Photophysics I: Benchmarking Density Functionals for Computing Nonadiabatic Couplings and Internal Conversion Rate Constants. J Chem Theory Comput 2023; 19:271-292. [PMID: 36490305 DOI: 10.1021/acs.jctc.2c00888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the first benchmarking study of nonadiabatic matrix coupling elements (NACMEs) calculated using different density functionals. Using the S1 → S0 transition in perylene solvated in toluene as a case study, we calculate the photophysical properties and corresponding rate constants for a variety of density functionals from each rung of Jacob's ladder. The singlet photoluminescence quantum yield (sPLQY) is taken as a measure of accuracy, measured experimentally here as 0.955. Important quantum chemical parameters such as geometries, absorption, emission, and adiabatic energies, NACMEs, Hessians, and transition dipole moments were calculated for each density functional basis set combination (data set) using density functional theory based multireference configuration interaction (DFT/MRCI) and compared to experiment where possible. We were able to derive simple relations between the TDDFT and DFT/MRCI photophysical properties; with semiempirical damping factors of ∼0.843 ± 0.017 and ∼0.954 ± 0.064 for TDDFT transition dipole moments and energies to DFT/MRCI level approximations, respectively. NACMEs were dominated by out-of-plane derivative components belonging to the center-most ring atoms with weaker contributions from perturbations along the transverse and longitudinal axes. Calculated theoretical spectra compared well to both experiment and literature, with fluorescence lifetimes between 7.1 and 12.5 ns, agreeing within a factor of 2 with experiment. Internal conversion (IC) rates were then calculated and were found to vary wildly between 106-1016 s-1 compared with an experimental rate of the order 107 s-1. Following further testing by mixing data sets, we found a strong dependence on the method used to obtain the Hessian. The 5 characterized data sets ranked in order of most promising are PBE0/def2-TZVP, ωB97XD/def2-TZVP, HCTH407/TZVP, PBE/TZVP, and PBE/def2-TZVP.
Collapse
Affiliation(s)
- Anjay Manian
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne3000, Australia
| | - Rohan J Hudson
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville3010, Australia
| | - Pria Ramkissoon
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville3010, Australia
| | - Trevor A Smith
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville3010, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne3000, Australia
| |
Collapse
|
15
|
Shaalan Alag A, Jelenfi DP, Tajti A, Szalay PG. Accurate Prediction of Vertical Ionization Potentials and Electron Affinities from Spin-Component Scaled CC2 and ADC(2) Models. J Chem Theory Comput 2022; 18:6794-6801. [PMID: 36269873 PMCID: PMC9890482 DOI: 10.1021/acs.jctc.2c00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The CC2 and ADC(2) wave function models and their spin-component scaled modifications are adopted for predicting vertical ionization potentials (VIPs) and electron affinities (VEAs). The ionic solutions are obtained as electronic excitations in the continuum orbital formalism, making possible the use of existing, widespread quantum chemistry codes with minimal modifications, in full consistency with the treatment of charge transfer excitations. The performance of different variants is evaluated via benchmark calculations on various sets from previous works, containing small- and medium-sized systems, including the nucleobases. It is shown that with the spin-scaled approximate methods, in particular the scaled opposite-spin variant of the ADC(2) method, the accuracy of EOM-CCSD is achievable at a fraction of the computational cost, also outperforming many common electron propagator approaches.
Collapse
Affiliation(s)
- Ahmed Shaalan Alag
- György
Hevesy Doctoral School, Institute of Chemistry,
ELTE Eötvös Loránd University, H-1117Budapest, Hungary
| | - Dávid P. Jelenfi
- György
Hevesy Doctoral School, Institute of Chemistry,
ELTE Eötvös Loránd University, H-1117Budapest, Hungary
| | - Attila Tajti
- Laboratory
of Theoretical Chemistry, Institute of Chemistry,
ELTE Eötvös Loránd University, P.O. Box 32, H-1518Budapest 112, Hungary,E-mail:
| | - Péter G. Szalay
- Laboratory
of Theoretical Chemistry, Institute of Chemistry,
ELTE Eötvös Loránd University, P.O. Box 32, H-1518Budapest 112, Hungary
| |
Collapse
|
16
|
Kretz B, Egger D. Accurate Non-Adiabatic Couplings from Optimally-Tuned Range-Separated Hybrid Functionals. J Chem Phys 2022; 157:101104. [DOI: 10.1063/5.0099854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Precise theoretical calculations of non-adiabatic couplings, which describe the interaction between two Born-Oppenheimer surfaces, are important for the modeling of radiationless decay mechanisms in photochemical processes. Here, we demonstrate that accurate non-adiabatic couplings can be calculated in the framework of linear-response time-dependent density functional theory by using non-empirical, optimally-tuned range-separated hybrid (OT-RSH) functionals. We focus on molecular radicals, in which ultrafast non-radiative decay plays a crucial role, to find that the OT-RSH functional compares well to wave-function based reference data and competes with the accuracy of semi-empirical CAM-B3LYP calculations. Our findings show that the OT-RSH approach provides very accurate non-adiabatic couplings and, therefore, provides a computationally efficient alternative to wave-function based techniques.
Collapse
|
17
|
Triana JF, Peláez D, Hochlaf M, Sanz-Vicario JL. Ultrafast CO 2 photodissociation in the energy region of the lowest Rydberg series. Phys Chem Chem Phys 2022; 24:14072-14084. [PMID: 35640548 DOI: 10.1039/d2cp01017h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a detailed theoretical survey of the electronic structure of excited states of the CO2 molecule, with the aim of providing a well-defined theoretical framework for the quantum dynamical studies at energies beyond 12 eV from the ground state. One of the major goals of our work is to emphasize the need for dealing with the presence of both molecular valence and Rydberg states. Although a CASSCF/MRCI approach can be used to appropriately describe the lowest-lying valence states, it becomes incapable of describing the upper electronic states due to the exceedingly large number of electronic excitations required. To circumvent this we employ instead the EOM-CCSD monoconfigurational method to describe the manifold of both valence and Rydberg states in the Franck-Condon region and then a matching procedure to connect these EOM-CCSD eigensolutions with those obtained from CASSCF/MRCI in the outer region, thus ensuring the correct asymptotic behavior. Within this hybrid level of theory, we then analyze the role of valence and Rydberg states in the dynamical mechanism of the photodissociation of quasi-linear CO2 into CO + O fragments, by considering a simple but effective 1D multistate non-adiabatic model for the ultrafast C-O bond break up. We show evidence that the metastability of the Rydberg states must be accounted for in the ultrafast dynamics since they produce changes in the photodissociation yields within the first tens of fs.
Collapse
Affiliation(s)
- Johan F Triana
- Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara 3493, Estación Central, Chile.
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, Orsay, France.
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs-sur-Marne, France.
| | - José L Sanz-Vicario
- Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
18
|
Sánchez-Mansilla A, Sousa C, Kathir RK, Broer R, Straatsma TP, de Graaf C. On the role of dynamic electron correlation in non-orthogonal configuration interaction with fragments. Phys Chem Chem Phys 2022; 24:11931-11944. [PMID: 35521680 DOI: 10.1039/d2cp00772j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two different approaches have been implemented to include the effect of dynamic electron correlation in the Non-Orthogonal Configuration Interaction for Fragments (NOCI-F) method. The first is based on shifting the diagonal matrix elements of the NOCI matrix, while the second incorporates the dynamic correlation explicitly in the fragment wave functions used to construct the many-electron basis functions of the NOCI. The two approaches are illustrated for the calculation of the electronic coupling relevant in singlet fission and the coupling of spin moments in organic radicals. Comparison of the calculated diabatic couplings, the NOCI energies and wave functions shows that dynamic electron correlation is not only efficiently but also effectively incorporated by the shifting approach and can largely affect the coupling between electronic states. Also, it brings the NOCI coupling of the spin moments in close agreement with benchmark calculations.
Collapse
Affiliation(s)
- A Sánchez-Mansilla
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - C Sousa
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Spain.
| | - R K Kathir
- Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - R Broer
- Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA.,Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - C de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain.,Zernike Institute of Advanced Materials, University of Groningen, The Netherlands.,ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
19
|
Talbot JJ, Head-Gordon M, Miller WH, Cotton SJ. Dynamic signatures of electronically nonadiabatic coupling in sodium hydride: a rigorous test for the symmetric quasi-classical model applied to realistic, ab initio electronic states in the adiabatic representation. Phys Chem Chem Phys 2022; 24:4820-4831. [PMID: 35156112 DOI: 10.1039/d1cp04090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both computational and experimental standpoints. The single vibrational degree of freedom, as well as the strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model population dynamics where the results are directly comparable against quantum mechanical benchmarks. Using a simulated pump-probe type experiment, this work presents computational predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical Meyer-Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy surfaces. The main driving force for population transfer arises from the ground vibrational level of the D1Σ+ adiabatic state that is embedded in the manifold of near-dissociation C1Σ+ vibrational states. When coupled through a sharply localized first-order derivative coupling most of the population transfers between t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled regime is presented using a variational eigensolver methodology.
Collapse
Affiliation(s)
- Justin J Talbot
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - William H Miller
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Stephen J Cotton
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
20
|
Yalouz S, Koridon E, Senjean B, Lasorne B, Buda F, Visscher L. Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver. J Chem Theory Comput 2022; 18:776-794. [PMID: 35029988 DOI: 10.1021/acs.jctc.1c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.
Collapse
Affiliation(s)
- Saad Yalouz
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg, 67000, France
| | - Emiel Koridon
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, Amsterdam, NL-1081 HV, The Netherlands.,Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, Leiden, 2300 RA, The Netherlands
| | - Bruno Senjean
- CGM, Univ Montpellier, CNRS, ENSCM, Montpellier, 34070, France
| | | | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, Amsterdam, NL-1081 HV, The Netherlands
| |
Collapse
|
21
|
Guardado JL, Urquilla JA, Kidwell NM, Petit AS. Reactive quenching of NO (A 2Σ +) with H 2O leads to HONO: a theoretical analysis of the reactive and nonreactive electronic quenching mechanisms. Phys Chem Chem Phys 2022; 24:26717-26730. [DOI: 10.1039/d2cp04214b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we develop a mechanistic understanding of the pathways for nonreactive and reactive electronic quenching of NO (A2Σ+) with H2O. In doing so, we identify a photochemical mechanism for HONO production in the upper atmosphere.
Collapse
Affiliation(s)
- José L. Guardado
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| | - Justin A. Urquilla
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| | - Nathanael M. Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| |
Collapse
|
22
|
Jelenfi DP, Tajti A, Szalay PG. First-principles interpretation of electron transport through single-molecule junctions using molecular dynamics of electron attached states. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1999518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dávid P. Jelenfi
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Tajti
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter G. Szalay
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
23
|
Epifanovsky E, Gilbert ATB, Feng X, Lee J, Mao Y, Mardirossian N, Pokhilko P, White AF, Coons MP, Dempwolff AL, Gan Z, Hait D, Horn PR, Jacobson LD, Kaliman I, Kussmann J, Lange AW, Lao KU, Levine DS, Liu J, McKenzie SC, Morrison AF, Nanda KD, Plasser F, Rehn DR, Vidal ML, You ZQ, Zhu Y, Alam B, Albrecht BJ, Aldossary A, Alguire E, Andersen JH, Athavale V, Barton D, Begam K, Behn A, Bellonzi N, Bernard YA, Berquist EJ, Burton HGA, Carreras A, Carter-Fenk K, Chakraborty R, Chien AD, Closser KD, Cofer-Shabica V, Dasgupta S, de Wergifosse M, Deng J, Diedenhofen M, Do H, Ehlert S, Fang PT, Fatehi S, Feng Q, Friedhoff T, Gayvert J, Ge Q, Gidofalvi G, Goldey M, Gomes J, González-Espinoza CE, Gulania S, Gunina AO, Hanson-Heine MWD, Harbach PHP, Hauser A, Herbst MF, Hernández Vera M, Hodecker M, Holden ZC, Houck S, Huang X, Hui K, Huynh BC, Ivanov M, Jász Á, Ji H, Jiang H, Kaduk B, Kähler S, Khistyaev K, Kim J, Kis G, Klunzinger P, Koczor-Benda Z, Koh JH, Kosenkov D, Koulias L, Kowalczyk T, Krauter CM, Kue K, Kunitsa A, Kus T, Ladjánszki I, Landau A, Lawler KV, Lefrancois D, Lehtola S, Li RR, Li YP, Liang J, Liebenthal M, Lin HH, Lin YS, Liu F, Liu KY, Loipersberger M, Luenser A, Manjanath A, Manohar P, Mansoor E, Manzer SF, Mao SP, Marenich AV, Markovich T, Mason S, Maurer SA, McLaughlin PF, Menger MFSJ, Mewes JM, Mewes SA, Morgante P, Mullinax JW, Oosterbaan KJ, Paran G, Paul AC, Paul SK, Pavošević F, Pei Z, Prager S, Proynov EI, Rák Á, Ramos-Cordoba E, Rana B, Rask AE, Rettig A, Richard RM, Rob F, Rossomme E, Scheele T, Scheurer M, Schneider M, Sergueev N, Sharada SM, Skomorowski W, Small DW, Stein CJ, Su YC, Sundstrom EJ, Tao Z, Thirman J, Tornai GJ, Tsuchimochi T, Tubman NM, Veccham SP, Vydrov O, Wenzel J, Witte J, Yamada A, Yao K, Yeganeh S, Yost SR, Zech A, Zhang IY, Zhang X, Zhang Y, Zuev D, Aspuru-Guzik A, Bell AT, Besley NA, Bravaya KB, Brooks BR, Casanova D, Chai JD, Coriani S, Cramer CJ, Cserey G, DePrince AE, DiStasio RA, Dreuw A, Dunietz BD, Furlani TR, Goddard WA, Hammes-Schiffer S, Head-Gordon T, Hehre WJ, Hsu CP, Jagau TC, Jung Y, Klamt A, Kong J, Lambrecht DS, Liang W, Mayhall NJ, McCurdy CW, Neaton JB, Ochsenfeld C, Parkhill JA, Peverati R, Rassolov VA, Shao Y, Slipchenko LV, Stauch T, Steele RP, Subotnik JE, Thom AJW, Tkatchenko A, Truhlar DG, Van Voorhis T, Wesolowski TA, Whaley KB, Woodcock HL, Zimmerman PM, Faraji S, Gill PMW, Head-Gordon M, Herbert JM, Krylov AI. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J Chem Phys 2021; 155:084801. [PMID: 34470363 PMCID: PMC9984241 DOI: 10.1063/5.0055522] [Citation(s) in RCA: 581] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.
Collapse
Affiliation(s)
- Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | | | | | - Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuezhi Mao
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alec F. White
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Marc P. Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrian L. Dempwolff
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Zhengting Gan
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Diptarka Hait
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Paul R. Horn
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Leif D. Jacobson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Jörg Kussmann
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Adrian W. Lange
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel S. Levine
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Simon C. McKenzie
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | - Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Dirk R. Rehn
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Marta L. Vidal
- Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kgs Lyngby, Denmark
| | | | - Ying Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bushra Alam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J. Albrecht
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Ethan Alguire
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Josefine H. Andersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kgs Lyngby, Denmark
| | - Vishikh Athavale
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dennis Barton
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Andrew Behn
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yves A. Bernard
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Hugh G. A. Burton
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Abel Carreras
- Donostia International Physics Center, 20080 Donostia, Euskadi, Spain
| | - Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Alan D. Chien
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Marc de Wergifosse
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Jia Deng
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | - Hainam Do
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Po-Tung Fang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | | | - Qingguo Feng
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Triet Friedhoff
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - James Gayvert
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Qinghui Ge
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, USA
| | - Matthew Goldey
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joe Gomes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Anastasia O. Gunina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Phillip H. P. Harbach
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Hauser
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| | | | - Mario Hernández Vera
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Manuel Hodecker
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Zachary C. Holden
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon Houck
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Xunkun Huang
- Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Kerwin Hui
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Bang C. Huynh
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maxim Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Ádám Jász
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | - Hyunjun Ji
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Benjamin Kaduk
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sven Kähler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Kirill Khistyaev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Jaehoon Kim
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gergely Kis
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | | | - Zsuzsanna Koczor-Benda
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Joong Hoon Koh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Dimitri Kosenkov
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Laura Koulias
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | | - Caroline M. Krauter
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Karl Kue
- Institute of Chemistry, Academia Sinica, 128, Academia Road Section 2, Nangang District, Taipei 11529, Taiwan
| | - Alexander Kunitsa
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Thomas Kus
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Arie Landau
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Keith V. Lawler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | | | - Run R. Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Yi-Pei Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jiashu Liang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Marcus Liebenthal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Hung-Hsuan Lin
- Institute of Chemistry, Academia Sinica, 128, Academia Road Section 2, Nangang District, Taipei 11529, Taiwan
| | - You-Sheng Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Fenglai Liu
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | | | | | - Arne Luenser
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Aaditya Manjanath
- Institute of Chemistry, Academia Sinica, 128, Academia Road Section 2, Nangang District, Taipei 11529, Taiwan
| | - Prashant Manohar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Erum Mansoor
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sam F. Manzer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Shan-Ping Mao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | | | - Thomas Markovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stephen Mason
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Simon A. Maurer
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Peter F. McLaughlin
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | | | - Jan-Michael Mewes
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Pierpaolo Morgante
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - J. Wayne Mullinax
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | | | | | - Alexander C. Paul
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Suranjan K. Paul
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fabijan Pavošević
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Zheng Pei
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Stefan Prager
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Emil I. Proynov
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Ádám Rák
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | - Eloy Ramos-Cordoba
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alan E. Rask
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Adam Rettig
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ryan M. Richard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fazle Rob
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Elliot Rossomme
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tarek Scheele
- Institute for Physical and Theoretical Chemistry, University of Bremen, Bremen, Germany
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Matthias Schneider
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Nickolai Sergueev
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Shaama M. Sharada
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Wojciech Skomorowski
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christopher J. Stein
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yu-Chuan Su
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Eric J. Sundstrom
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zhen Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jonathan Thirman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Gábor J. Tornai
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | - Takashi Tsuchimochi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Norm M. Tubman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Oleg Vydrov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jan Wenzel
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Jon Witte
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Atsushi Yamada
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Kun Yao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Sina Yeganeh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shane R. Yost
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexander Zech
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Igor Ying Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xing Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yu Zhang
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Dmitry Zuev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Alexis T. Bell
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biophysics, National Institute of Health, Bethesda, Maryland 20892, USA
| | - David Casanova
- Donostia International Physics Center, 20080 Donostia, Euskadi, Spain
| | | | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kgs Lyngby, Denmark
| | | | | | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Robert A. DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Thomas R. Furlani
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | - Yousung Jung
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Andreas Klamt
- COSMOlogic GmbH & Co. KG, Imbacher Weg 46, D-51379 Leverkusen, Germany
| | - Jing Kong
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Daniel S. Lambrecht
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | - C. William McCurdy
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Jeffrey B. Neaton
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - John A. Parkhill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roberto Peverati
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - Vitaly A. Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | - Ryan P. Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Donald G. Truhlar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - K. Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, 9774AG Groningen, The Netherlands
| | | | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
24
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
25
|
Bracker M, Marian CM, Kleinschmidt M. Internal conversion of singlet and triplet states employing numerical DFT/MRCI derivative couplings: Implementation, tests, and application to xanthone. J Chem Phys 2021; 155:014102. [PMID: 34241387 DOI: 10.1063/5.0056182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an efficient implementation of nonadiabatic coupling matrix elements (NACMEs) for density functional theory/multireference configuration interaction (DFT/MRCI) wave functions of singlet and triplet multiplicity and an extension of the Vibes program that allows us to determine rate constants for internal conversion (IC) in addition to intersystem crossing (ISC) nonradiative transitions. Following the suggestion of Plasser et al. [J. Chem. Theory Comput. 12, 1207 (2016)], the derivative couplings are computed as finite differences of wave function overlaps. Several measures have been taken to speed up the calculation of the NACMEs. Schur's determinant complement is employed to build up the determinant of the full matrix of spin-blocked orbital overlaps from precomputed spin factors with fixed orbital occupation. Test calculations on formaldehyde, pyrazine, and xanthone show that the mutual excitation level of the configurations at the reference and displaced geometries can be restricted to 1. In combination with a cutoff parameter of tnorm = 10-8 for the DFT/MRCI wave function expansion, this approximation leads to substantial savings of cpu time without essential loss of precision. With regard to applications, the photoexcitation decay kinetics of xanthone in apolar media and in aqueous solution is in the focus of the present work. The results of our computational study substantiate the conjecture that S1 T2 reverse ISC outcompetes the T2 ↝ T1 IC in aqueous solution, thus explaining the occurrence of delayed fluorescence in addition to prompt fluorescence.
Collapse
Affiliation(s)
- Mario Bracker
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Gulania S, Kjønstad EF, Stanton JF, Koch H, Krylov AI. Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks. J Chem Phys 2021; 154:114115. [PMID: 33752380 DOI: 10.1063/5.0041822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a production-level implementation of the equation-of-motion (EOM) coupled-cluster (CC) method with double electron-attaching (DEA) EOM operators of 2p and 3p1h types, EOM-DEA-CCSD. This ansatz, suitable for treating electronic structure patterns that can be described as two-electrons-in-many orbitals, represents a useful addition to the EOM-CC family of methods. We analyze the performance of EOM-DEA-CCSD for energy differences and molecular properties. By considering reduced quantities, such as state and transition one-particle density matrices, we compare EOM-DEA-CCSD wave functions with wave functions computed by other EOM-CCSD methods. The benchmarks illustrate that EOM-DEA-CCSD is capable of treating diradicals, bond-breaking, and some types of conical intersections.
Collapse
Affiliation(s)
- Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - John F Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavaleri 7, 56126 Pisa, Italy
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
27
|
Abstract
![]()
In
coupled cluster theory, the electronic states are biorthonormal
in the sense that the left states are orthonormal to the right states.
Here, we present an extension of this formalism to a left and right
total molecular wave function. Starting from left and right Born–Huang
expansions, we derive projected Schrödinger equations for the
left and right nuclear wave functions. Observables may be extracted
from the resulting wave function pair using standard expressions.
The formalism is shown to be invariant under electronic basis transformations,
such as normalization of the electronic states. Consequently, the
nonadiabatic coupling elements can be expressed with biorthonormal
electronic wave functions. Calculating normalization factors that
scale as full configuration interaction is not necessary, contrary
to claims in the literature. For nonadiabatic nuclear dynamics, we
need expressions for the derivative couplings in the biorthonormal
formalism. These are derived in a Lagrangian framework.
Collapse
Affiliation(s)
- Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa PI 56126, Italy
| |
Collapse
|
28
|
Ramos P, Pavanello M. Nonadiabatic couplings from a variational excited state method based on constrained DFT. J Chem Phys 2021; 154:014110. [DOI: 10.1063/5.0028872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pablo Ramos
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
29
|
Yan Y, Sharma K, Miller TA, Liu J. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states. II. Interpretation of experimentally determined interstate coupling parameters of alkoxy radicals. J Chem Phys 2020; 153:174306. [PMID: 33167646 DOI: 10.1063/5.0026212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rotationally and fine-structure resolved B̃←X̃ laser-induced fluorescence (LIF) spectra of alkoxy radicals have been simulated with a "coupled two-states model" [J. Liu, J. Chem. Phys. 148, 124112 (2018)], in which the nearly degenerate X̃ and à states are considered together. These two electronic states are separated by the "difference potential" and coupled by the spin-orbit (SO) interaction and the Coriolis interaction. Molecular constants determined in fitting the LIF spectra using the coupled two-states model provide quantitative insight into the SO and Coriolis interactions, as well as other intramolecular dynamics, including the pseudo-Jahn-Teller effect. The spectroscopic model also allows semi-quantitative prediction of effective spin-rotation constants using molecular geometry and SO constants, which can be calculated ab initio with considerable accuracy. The dependence of fit values of molecular constants on the size and conformation of alkoxy radicals is discussed.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ketan Sharma
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Terry A Miller
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinjun Liu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
30
|
Nanda KD, Krylov AI. Cherry-picking resolvents: A general strategy for convergent coupled-cluster damped response calculations of core-level spectra. J Chem Phys 2020; 153:141104. [DOI: 10.1063/5.0020843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
31
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
32
|
Jiang H, Zimmerman PM. Charge transfer via spin flip configuration interaction: Benchmarks and application to singlet fission. J Chem Phys 2020; 153:064109. [DOI: 10.1063/5.0018267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
33
|
Matthews DA, Cheng L, Harding ME, Lipparini F, Stopkowicz S, Jagau TC, Szalay PG, Gauss J, Stanton JF. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J Chem Phys 2020; 152:214108. [DOI: 10.1063/5.0004837] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael E. Harding
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, D-76131 Karlsruhe, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Thomas-C. Jagau
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - John F. Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
34
|
Salazar E, Faraji S. Theoretical study of cyclohexadiene/hexatriene photochemical interconversion using spin-Flip time-Dependent density functional theory. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1764120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edison Salazar
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Shirin Faraji
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
35
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
36
|
Pokhilko P, Izmodenov D, Krylov AI. Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets. J Chem Phys 2020; 152:034105. [DOI: 10.1063/1.5138643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Daniil Izmodenov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
37
|
Vidal ML, Krylov AI, Coriani S. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to X-ray photoelectron spectroscopy of ground and excited states. Phys Chem Chem Phys 2020; 22:2693-2703. [DOI: 10.1039/c9cp03695d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionization energies and Dyson orbitals within frozen-core core–valence separated equation-of-motion coupled cluster singles and doubles (fc-CVS-EOM-CCSD) enable efficient and reliable calculations of standard XPS and of UV-pump/XPS probe spectra.
Collapse
Affiliation(s)
- Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- Kongens Lyngby
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- Kongens Lyngby
- Denmark
| |
Collapse
|
38
|
Nanda KD, Vidal ML, Faber R, Coriani S, Krylov AI. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys Chem Chem Phys 2020; 22:2629-2641. [DOI: 10.1039/c9cp03688a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a novel approach with robust convergence of the response equations for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework.
Collapse
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Rasmus Faber
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
39
|
Kjønstad EF, Koch H. An Orbital Invariant Similarity Constrained Coupled Cluster Model. J Chem Theory Comput 2019; 15:5386-5397. [PMID: 31487174 DOI: 10.1021/acs.jctc.9b00702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a similarity constrained coupled cluster method able to describe conical intersections between two excited electronic states of the same symmetry. For a given pair of states, this singles and doubles method (SCCSD) is unique and orbital invariant. The computational cost scales as the sixth power with respect to the number of orbitals, and preliminary calculations indicate that the excitation energy difference relative to CCSD is within the error range of CCSD (approximately 0.10 eV). We also analyze the size-scaling properties of the orthogonality condition. For a projected orthogonality condition we show, and demonstrate numerically, that the method is rigorously size-intensive.
Collapse
Affiliation(s)
- Eirik F Kjønstad
- Department of Chemistry , Norwegian University of Science and Technology , 7491 Trondheim , Norway.,Scuola Normale Superiore , Piazza dei Cavalieri, 7 , 56126 Pisa , Province of Pisa , Italy
| | - Henrik Koch
- Department of Chemistry , Norwegian University of Science and Technology , 7491 Trondheim , Norway.,Scuola Normale Superiore , Piazza dei Cavalieri, 7 , 56126 Pisa , Province of Pisa , Italy
| |
Collapse
|
40
|
Pokhilko P, Epifanovsky E, Krylov AI. General framework for calculating spin-orbit couplings using spinless one-particle density matrices: Theory and application to the equation-of-motion coupled-cluster wave functions. J Chem Phys 2019; 151:034106. [PMID: 31325926 DOI: 10.1063/1.5108762] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Standard implementations of nonrelativistic excited-state calculations compute only one component of spin multiplets (i.e., Ms = 0 triplets); however, matrix elements for all components are necessary for deriving spin-dependent experimental observables. Wigner-Eckart's theorem allows one to circumvent explicit calculations of all multiplet components. We generate all other spin-orbit matrix elements by applying Wigner-Eckart's theorem to a reduced one-particle transition density matrix computed for a single multiplet component. In addition to computational efficiency, this approach also resolves the phase issue arising within Born-Oppenheimer's separation of nuclear and electronic degrees of freedom. A general formalism and its application to the calculation of spin-orbit couplings using equation-of-motion coupled-cluster wave functions are presented. The two-electron contributions are included via the mean-field spin-orbit treatment. Intrinsic issues of constructing spin-orbit mean-field operators for open-shell references are discussed, and a resolution is proposed. The method is benchmarked by using several radicals and diradicals. The merits of the approach are illustrated by a calculation of the barrier for spin inversion in a high-spin tris(pyrrolylmethyl)amine Fe(II) complex.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA and Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
41
|
Pokhilko P, Shannon R, Glowacki D, Wang H, Krylov AI. Spin-Forbidden Channels in Reactions of Unsaturated Hydrocarbons with O(3P). J Phys Chem A 2018; 123:482-491. [DOI: 10.1021/acs.jpca.8b10225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Robin Shannon
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - David Glowacki
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Hai Wang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305-3032, United States
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
42
|
Benda Z, Jagau TC. Locating Exceptional Points on Multidimensional Complex-Valued Potential Energy Surfaces. J Phys Chem Lett 2018; 9:6978-6984. [PMID: 30481030 DOI: 10.1021/acs.jpclett.8b03228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a method for locating non-Hermitian degeneracies, called exceptional points (EPs), and minimum-energy EPs between molecular resonances using the complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC) method. EPs are the complex-valued analogue of conical intersections (CIs) and have a similar impact on nonadiabatic processes between resonances as CIs have on nonradiative transitions between bound states. We demonstrate that the CAP-EOM-CC method in the singles and doubles approximation (CAP-EOM-CCSD) yields crossings of the correct dimensionality. The use of analytic gradients enables applications to multidimensional problems. Results are presented for hydrogen cyanide and chloroethylene, for which the location of the crossings of anionic resonances is crucial for understanding the dissociative electron attachment process.
Collapse
Affiliation(s)
- Zsuzsanna Benda
- Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Thomas-C Jagau
- Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| |
Collapse
|
43
|
COBRAMM 2.0 — A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J Mol Model 2018; 24:271. [DOI: 10.1007/s00894-018-3769-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023]
|