1
|
Xu S, Yang J, Su P, Wang Q, Yang X, Zhou Z, Li Y. Identifying key intermediates for the oxygen evolution reaction on hematite using ab-initio molecular dynamics. Nat Commun 2024; 15:10411. [PMID: 39613772 DOI: 10.1038/s41467-024-54796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Hematite is a well-known catalyst for the oxygen evolution reaction on photoanodes in photoelectrochemical water-splitting cells. However, the knowledge of hematite-water interfaces and water oxidation mechanisms is still lacking, which limits improvements in photoelectrochemical water-splitting performance. Herein, we use the Fe-terminated hematite (0001) surface as a model and propose a comprehensive mechanism for the oxygen evolution reaction on both non-solvated and solvated surfaces. Key reaction intermediates are identified through ab initio molecular dynamics simulations at the density functional theory level with a Hubbard U correction. Several notable intermediates are proposed, and the effects of water solvent on these intermediates and the overall reaction mechanisms are suggested. The proposed mechanisms align well with experimental observations under photoelectrochemical water oxidation conditions. Additionally, we highlight the potential role of O2 desorption in the oxygen evolution reaction on hematite, as O2 adsorption may block reaction sites and increases surface hydrophobicity, leading to an unfavorable pathway for oxygen evolution.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Jiarui Yang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Peixian Su
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Qiang Wang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhaohui Zhou
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China.
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China.
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China.
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China.
| |
Collapse
|
2
|
Chen J, Sharapa DI, Plessow PN. Stability of Hydroxylated α-Fe 2O 3(0001) Surfaces. ACS OMEGA 2024; 9:35449-35457. [PMID: 39184516 PMCID: PMC11339807 DOI: 10.1021/acsomega.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 08/27/2024]
Abstract
The stability of hydroxylated terminations of the 0001 surface of α-Fe2O3 (hematite) is investigated computationally using PBE + U calculations with dispersion corrections. Hydroxylated surfaces with low OH concentrations are found to be most stable in a range of the chemical potential of water of -0.95 eV > μH2O > -2.22 eV. These surfaces can be described as isolated Fe(OH)3 groups adsorbed on the dry hematite surface and are predicted to be the exposed termination of the 0001 surface in a wide range of relevant experimental conditions. Most investigated reduced surfaces, containing Fe in oxidation state +2, are only stable in a range of the chemical potential of oxygen μO < -2.44 eV, where bulk hematite is less than magnetite. The only reduced surface stable at a higher μO is derived from the most stable nonreduced hydroxylated surfaces by removing a single OH group per unit cell.
Collapse
Affiliation(s)
- Jiachen Chen
- Institute of Catalysis Research
and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dmitry I. Sharapa
- Institute of Catalysis Research
and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research
and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Lahiri N, Song D, Zhang X, Huang X, Stoerzinger KA, Carvalho OQ, Adiga PP, Blum M, Rosso KM. Interplay between Facets and Defects during the Dissociative and Molecular Adsorption of Water on Metal Oxide Surfaces. J Am Chem Soc 2023; 145:2930-2940. [PMID: 36696237 DOI: 10.1021/jacs.2c11291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Surface terminations and defects play a central role in determining how water interacts with metal oxides, thereby setting important properties of the interface that govern reactivity such as the type and distribution of hydroxyl groups. However, the interconnections between facets and defects remain poorly understood. This limits the usefulness of conventional notions such as that hydroxylation is controlled by metal cation exposure at the surface. Here, using hematite (α-Fe2O3) as a model system, we show how oxygen vacancies overwhelm surface cation-dependent hydroxylation behavior. Synchrotron-based ambient-pressure X-ray photoelectron spectroscopy was used to monitor the adsorption of molecular water and its dissociation to form hydroxyl groups in situ on (001), (012), or (104) facet-engineered hematite nanoparticles. Supported by density functional theory calculations of the respective surface energies and oxygen vacancy formation energies, the findings show how oxygen vacancies are more prone to form on higher energy facets and induce surface hydroxylation at extremely low relative humidity values of 5 × 10-5%. When these vacancies are eliminated, the extent of surface hydroxylation across the facets is as expected from the areal density of exposed iron cations at the surface. These findings help answer fundamental questions about the nature of reducible metal oxide-water interfaces in natural and technological settings and lay the groundwork for rational design of improved oxide-based catalysts.
Collapse
Affiliation(s)
- Nabajit Lahiri
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Duo Song
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Xiaopeng Huang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Kelsey A Stoerzinger
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States.,Department of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon97331, United States
| | - O Quinn Carvalho
- Department of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon97331, United States
| | - Prajwal P Adiga
- Department of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon97331, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| |
Collapse
|
4
|
Miao Y, Yan H, Hong B, Zhou X, Tong L, Xiao Y, Qiu S, Yang B, Long Q, Li Y, Xia Y, Qiu T. DFT study of the effect of impurity defects on the inner-layer adsorption of hydrated Al(OH)2+ on the kaolinite (001) surface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Marquis E, Cutini M, Anasori B, Rosenkranz A, Righi MC. Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study. ACS APPLIED NANO MATERIALS 2022; 5:10516-10527. [PMID: 36062064 PMCID: PMC9425433 DOI: 10.1021/acsanm.2c01847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Understanding the interlayer interaction at the nanoscale in two-dimensional (2D) transition metal carbides and nitrides (MXenes) is important to improve their exfoliation/delamination process and application in (nano)-tribology. The layer-substrate interaction is also essential in (nano)-tribology as effective solid lubricants should be resistant against peeling-off during rubbing. Previous computational studies considered MXenes' interlayer coupling with oversimplified, homogeneous terminations while neglecting the interaction with underlying substrates. In our study, Ti-based MXenes with both homogeneous and mixed terminations are modeled using density functional theory (DFT). An ad hoc modified dispersion correction scheme is used, capable of reproducing the results obtained from a higher level of theory. The nature of the interlayer interactions, comprising van der Waals, dipole-dipole, and hydrogen bonding, is discussed along with the effects of MXene sheet's thickness and C/N ratio. Our results demonstrate that terminations play a major role in regulating MXenes' interlayer and substrate adhesion to iron and iron oxide and, therefore, lubrication, which is also affected by an external load. Using graphene and MoS2 as established references, we verify that MXenes' tribological performance as solid lubricants can be significantly improved by avoiding -OH and -F terminations, which can be done by controlling terminations via post-synthesis processing.
Collapse
Affiliation(s)
- Edoardo Marquis
- Department
of Physics and Astronomy, Alma Mater Studiorum
− University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy
| | - Michele Cutini
- Department
of Physics and Astronomy, Alma Mater Studiorum
− University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy
| | - Babak Anasori
- Department
of Mechanical and Energy Engineering, and Integrated Nanosystems Development
Institute, Indiana University-Purdue University
Indianapolis, Indianapolis, Indiana 46202, United States
| | - Andreas Rosenkranz
- Department
of Chemical Engineering, Biotechnology and Materials, University of Chile, Avenida Beaucheff 851, Santiago de Chile 8370456, Chile
| | - Maria Clelia Righi
- Department
of Physics and Astronomy, Alma Mater Studiorum
− University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy
| |
Collapse
|
6
|
Abbaspour Tamijani A, Augustine LJ, Bjorklund JL, Catalano JG, Mason SE. First-principles characterisation and comparison of clean, hydrated, and defect α-Al2O3 and α-Fe2O3 (110) surfaces. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2009117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Jeffrey G. Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, USA
| | - Sara E. Mason
- Department of Chemistry, University of Iowa, Iowa City, USA
| |
Collapse
|
7
|
Lin PJ, Yeh CH, Jiang JC. Theoretical insight into hydroxyl production via H 2O 2 decomposition over the Fe 3O 4(311) surface. RSC Adv 2021; 11:36257-36264. [PMID: 35492765 PMCID: PMC9043428 DOI: 10.1039/d1ra06943h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Fenton's reagent provides a method to produce active hydroxyl radicals (˙OH) for chemical oxidation by mixing iron oxide and hydrogen peroxide, which divides into homogeneous and heterogeneous Fenton's reagent. Heterogeneous Fenton's reagent is fabricated from H2O2 and various iron oxide solid materials, such as α-FeOOH, α-Fe2O3, and Fe3O4. Fe3O4 possesses the Fe2+/Fe3+ mixed valence oxidational state and has been reported to have good catalytic activity. However, the reaction mechanism of H2O2 decomposition on Fe3O4 surfaces is still unclear. In this work, we performed DFT calculations to investigate the H2O2 decomposition mechanisms over the Fe3O4(311) surface. There are two iron environments for H2O2 adsorption and decomposition on the Fe3O4(311) surface, a Fe2+/Fe3+ environment and a Fe3+/Fe3+ environment. We found that the H2O2 can adsorb on the Fe2+/Fe3+ environment by molecular adsorption but by dissociative adsorption on the Fe3+/Fe3+ environment. Our results show that both adsorption structures can produce two OH groups on the Fe3O4(311) surface thermodynamically. In addition, based on the electronic property analysis, H2O2 on the Fe2+/Fe3+ environment follows the Haber-Weiss mechanism to form one OH anion and one OH radical. On the other hand, H2O2 on the Fe3+/Fe3+ environment follows the radical mechanism to form two OH radicals. In particular, the OH radical formed on Fe2+/Fe3+ has energy levels on both sides of the Fermi energy level. It can be expected that this OH radical has good redox activity.
Collapse
Affiliation(s)
- Pin-Jun Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei 10607 Taiwan
| | - Chen-Hao Yeh
- Department of Materials Science and Engineering, Feng Chia University No. 100, Wenhwa Rd., Seatwen Taichung 40724 Taiwan
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei 10607 Taiwan
| |
Collapse
|
8
|
Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Sun M, Yun S, Shi J, Zhang Y, Arshad A, Dang J, Zhang L, Wang X, Liu Z. Designing and Understanding the Outstanding Tri-Iodide Reduction of N-Coordinated Magnetic Metal Modified Defect-Rich Carbon Dodecahedrons in Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102300. [PMID: 34510727 DOI: 10.1002/smll.202102300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen-coordinated metal-modified carbon is regarded as a novel frontier electrocatalyst in energy conversion devices. However, the construction of intrinsic defects in a carbon matrix remains a great challenge. Herein, N-coordinated magnetic metal (Fe, Co) modified porous carbon dodecahedrons (Fe/Co-NPCD) with a large surface area, rich intrinsic defects, and evenly distributed metal-Nx species are successfully synthesized via the rational design of iron precursor and the bimetallic-organic frameworks. Because of a synergistic effect between N-coordinated dual magnetic metal active sites, the Fe/Co-NPCD exhibits exceptional electrocatalytic activity and electrochemical stability. A solar cell fabricates with the Fe/Co-NPCD yields an impressive power conversion efficiency of 8.35% in dye-sensitized solar cells, superior to that of mono-metal-doped carbon-based cells and conventional Pt-based cells. Furthermore, density functional theory calculations illustrate that Fe, Co, and N doping are in favor of improving the adsorption capacity of the catalyst for I3 - species by optimizing the magnetic momentum between the magnetic metal atoms, thereby upgrading its catalytic activity. This work develops a general strategy for synthesizing a high-performance defect-rich carbon-based catalyst, and offers valuable insight into the role of magnetic metals in catalysis, which can be used to guide the design of high-performance catalysts in the energy field.
Collapse
Affiliation(s)
- Menglong Sun
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Jing Shi
- Department of physics, Xi'an Jiaotong University City College, Xi'an, Shaanxi, 710018, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Jiaoe Dang
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Lishan Zhang
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Xi Wang
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Zhuolei Liu
- Functional Materials Laboratory (FML), School of Materials Science and engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| |
Collapse
|
10
|
da Silva Alvim R, Ribeiro FN, Dalpian GM. Iron and oxygen vacancies at the hematite surface: pristine case and with a chlorine adatom. Phys Chem Chem Phys 2020; 22:25380-25389. [PMID: 33140776 DOI: 10.1039/d0cp03798b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect complexes play critical roles in the dynamics of water molecules in photoelectrochemical cell devices. For the specific case of hematite (α-Fe2O3), iron and oxygen vacancies are said to mediate the water splitting process through the localization of optically-derived charges. Using first-principles methods based on density-functional theory we show that both iron and oxygen vacancies can be observed at the surface. For an oxygen-rich environment, usually under wet conditions, the charged iron vacancies should be more frequent. As sea water would be an ideal electrolyte for this kind of device, we have also analyzed the effect of additional chlorine adsorption on this surface. While the chlorine adatom kills the charged oxygen vacancies, entering the void sites, it will not react with the iron vacancies, keeping them active during water splitting processes.
Collapse
Affiliation(s)
- Raphael da Silva Alvim
- Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André, SP 09210-580, Brazil.
| | | | | |
Collapse
|
11
|
Si Y, Li M, Zhou Z, Liu M, Prezhdo O. Improved description of hematite surfaces by the SCAN functional. J Chem Phys 2020; 152:024706. [PMID: 31941307 DOI: 10.1063/1.5134951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Controversies on the surface termination of α-Fe2O3 (0001) focus on its surface stoichiometry dependence on the oxygen chemical potential. Density functional theory (DFT) calculations applying the commonly accepted Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional to a strongly correlated system predict the best matching surface termination, but would produce a delocalization error, resulting in an inappropriate bandgap, and thus are not applicable for comprehensive hematite system studies. Besides, the widely applied PBE+U scheme cannot provide evidence for existence of some of the successfully synthesized stoichiometric α-Fe2O3 (0001) surfaces. Hence, a better scheme is needed for hematite DFT studies. This work investigates whether the strongly constrained and appropriately normed (SCAN) approximation reported by Perdew et al. could provide an improved result for the as-mentioned problem, and whether SCAN can be applied to hematite systems. By comparing the results calculated with the PBE, SCAN, PBE+U, and SCAN+U schemes, we find that SCAN and SCAN+U improves the description of the electronic structure of different stoichiometric α-Fe2O3 (0001) surfaces with respect to the PBE results, and that they give a consistent prediction of the surface terminations. Besides, the bulk lattice constants and the bulk density of states are also improved with the SCAN functional. This study provides a general characterization of the α-Fe2O3 (0001) surfaces and rationalizes how the SCAN approximation improves the results of hematite surface calculations.
Collapse
Affiliation(s)
- Yitao Si
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Mingtao Li
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710064, China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Oleg Prezhdo
- Deparment of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
12
|
Liu T, Luo W, Cole DR, Asthagiri A. Water adsorption on olivine(010) surfaces: Effect of alkali and transition metal cation doping. J Chem Phys 2019; 150:044703. [DOI: 10.1063/1.5058770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tingting Liu
- School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, Ohio 43210, USA
| | - Wenjia Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Ave., Chengdu 610500, People’s Republic of China
| | - David R. Cole
- School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, Ohio 43210, USA
| | - Aravind Asthagiri
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Ave., Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Fang Q, Zhu B, Sun Y, Zhu Z, Xu M, Ge T. Mechanistic insight into the selective catalytic reduction of NO by NH3 over α-Fe2O3 (001): a density functional theory study. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02080a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption properties and the selective catalytic reduction mechanism of NO, NH3 and O2 molecules over the α-Fe2O3 (001) surface were studied by density functional theory.
Collapse
Affiliation(s)
- Qilong Fang
- School of Energy and Environment
- Anhui University of Technology
- Maanshan
- China
| | - Baozhong Zhu
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
- School of Energy and Environment
| | - Yunlan Sun
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
- School of Energy and Environment
| | - Zicheng Zhu
- School of Energy and Environment
- Anhui University of Technology
- Maanshan
- China
| | - Minggao Xu
- Center for Advanced Combustion and Energy
- University of Science and Technology of China
- Hefei
- PR China
| | - Tingting Ge
- School of Energy and Environment
- Anhui University of Technology
- Maanshan
- China
| |
Collapse
|
14
|
Sharma P, Jang J, Lee JS. Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe2O3Photoanode. ChemCatChem 2018. [DOI: 10.1002/cctc.201801187] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pankaj Sharma
- Department of Energy Engineering School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Ji‐Wook Jang
- Department of Energy Engineering School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jae Sung Lee
- Department of Energy Engineering School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
15
|
Wang RB, Hellman A. Surface terminations of hematite (α-Fe 2O 3) exposed to oxygen, hydrogen, or water: dependence on the density functional theory methodology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:275002. [PMID: 29790856 DOI: 10.1088/1361-648x/aac743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hematite (α-Fe2O3) is the most stable and abundant iron oxide in nature, and is used in many important environmental and industrial technologies, such as waste-water treatment, gas sensors, and photoelectrocatalysis. A clear understanding of the structure, composition, and chemistry of the hematite surface is crucial for improving its function in these technologies. Here we employ density functional theory (DFT) together with the DFT+U approach using semi-local functionals, as well as hybrid functionals, to study the structure, stability, and electronic properties of the (0 0 0 1) surface exposed to oxygen, hydrogen, or water. The use of hybrid functionals allow for a description of strong correlation without the need for atom-specific empirical parameters (i.e. U). However, we find that PBE+U, and in part also PBE, give similar results as the hybrid functional HSE(12%) in terms of structure optimization. When it comes to stability, work function, as well as electronic structure, the results are sensitive to the choice of functionals, but we cannot judge which level of functional is most appropriate due to the lack of experimental observations.
Collapse
Affiliation(s)
- Richard B Wang
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | |
Collapse
|