1
|
Romanelli M, Corni S. Identifying Differences between Semiclassical and Full-Quantum Descriptions of Plexcitons. J Phys Chem Lett 2024; 15:9326-9334. [PMID: 39236151 DOI: 10.1021/acs.jpclett.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Strong light-matter coupling between molecules and plasmonic nanoparticles gives rise to new hybrid eigenstates of the coupled system, commonly referred to as polaritons or, more precisely, plexcitons. Over the past decade, it has been amply shown that molecular electron dynamics and photophysics can be drastically affected by such interactions, thus paving the way for light-induced control of molecular excited state properties and reactivity. Here, by combining the ab initio molecular description and classical or quantum modeling of arbitrarily shaped plasmonic nanostructures within the stochastic Schrödinger equation, we present two approaches, one semiclassical and one full-quantum, to follow in real time the electronic dynamics of plexcitons while realistically taking plasmonic dissipative losses into account. The full-quantum theory is compared with the semiclassical analogue under different interaction regimes, showing (numerically and theoretically) that even in the weak-field and weak-coupling limit a small-yet-observable difference arises.
Collapse
Affiliation(s)
- Marco Romanelli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Sun K, Vasquez L, Borrelli R, Chen L, Zhao Y, Gelin MF. Interconnection between Polarization-Detected and Population-Detected Signals: Theoretical Results and Ab Initio Simulations. J Chem Theory Comput 2024; 20:7560-7573. [PMID: 39185737 DOI: 10.1021/acs.jctc.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Most of spectroscopic signals are specified by the nonlinear laser-induced polarization. In recent years, population-detection of signals becomes a trend in femtosecond spectroscopy. Polarization-detected (PD) and population-detected signals are fundamentally different, because they are determined by photoinduced processes acting on disparate time scales. In this work, we consider the fluorescence-detected (FD) N-wave-mixing (NWM) signal as a representative example of population-detected signals, derive a rigorous expression for this signal, and discuss its approximate variants suitable for numerical simulations. This leads us to the definition of the phenomenological FD (PFD) signal, which contains as a special case all definitions of FD signals available in the literature. Then we formulate and prove the population-polarization equivalence (PPE) theorem, which states that PFD NWM signals produced by (possibly strong) laser pulses can be evaluated as conventional PD signals in which the effective polarization is determined by the PFD transition dipole moment operator. We use the PPE theorem for the construction of the ab initio protocol for the simulation of PFD 4WM signals. As an example, we calculate electronic two-dimensional (2D) PFD spectra of the gas-phase pyrazine and compare them with the corresponding PD 2D spectra.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Davidsson E, Kowalewski M. The role of dephasing for dark state coupling in a molecular Tavis-Cummings model. J Chem Phys 2023; 159:044306. [PMID: 37493131 PMCID: PMC7615654 DOI: 10.1063/5.0155302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
The collective coupling of an ensemble of molecules to a light field is commonly described by the Tavis-Cummings model. This model includes numerous eigenstates that are optically decoupled from the optically bright polariton states. Accessing these dark states requires breaking the symmetry in the corresponding Hamiltonian. In this paper, we investigate the influence of non-unitary processes on the dark state dynamics in the molecular Tavis-Cummings model. The system is modeled with a Lindblad equation that includes pure dephasing, as it would be caused by weak interactions with an environment, and photon decay. Our simulations show that the rate of pure dephasing, as well as the number of two-level systems, has a significant influence on the dark state population.
Collapse
Affiliation(s)
- Eric Davidsson
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Domenis N, Grobas Illobre P, Marsili M, Stener M, Toffoli D, Coccia E. Time Evolution of Plasmonic Features in Pentagonal Ag Clusters. Molecules 2023; 28:5671. [PMID: 37570641 PMCID: PMC10420145 DOI: 10.3390/molecules28155671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In the present work, we apply recently developed real-time descriptors to study the time evolution of plasmonic features of pentagonal Ag clusters. The method is based on the propagation of the time-dependent Schrödinger equation within a singly excited TDDFT ansatz. We use transition contribution maps (TCMs) and induced density to characterize the optical longitudinal and transverse response of such clusters, when interacting with pulses resonant with the low-energy (around 2-3 eV, A1) size-dependent or the high-energy (around 4 eV, E1) size-independent peak. TCMs plots on the analyzed clusters, Ag25+ and Ag43+ show off-diagonal peaks consistent with a plasmonic response when a longitudinal pulse resonant at A1 frequency is applied, and dominant diagonal spots, typical of a molecular transition, when a transverse E1 pulse is employed. Induced densities confirm this behavior, with a dipole-like charge distribution in the first case. The optical features show a time delay with respect to the evolution of the external pulse, consistent with those found in the literature for real-time TDDFT calculations on metal clusters.
Collapse
Affiliation(s)
- Nicola Domenis
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | | | - Margherita Marsili
- Dipartimento di Fisica e Astronomia “Augusto Righi”, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
5
|
Monti M, Stener M, Coccia E. Electronic circular dichroism from real-time propagation in state space. J Chem Phys 2023; 158:084102. [PMID: 36859092 DOI: 10.1063/5.0136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this paper, we propose to compute the electronic circular dichroism (ECD) spectra of chiral molecules using a real-time propagation of the time-dependent Schrödinger equation (TDSE) in the space of electronic field-free eigenstates, by coupling TDSE with a given treatment of the electronic structure of the target. The time-dependent induced magnetic moment is used to compute the ECD spectrum from an explicit electric perturbation. The full matrix representing the transition magnetic moment in the space of electronic states is generated from that among pairs of molecular orbitals. In the present work, we show the ECD spectra of methyloxirane, of several conformers of L-alanine, and of the Λ-Co(acac)3 complex, computed from a singly excited ansatz of time-dependent density functional theory eigenstates. The time-domain ECD spectra properly reproduce the frequency-domain ones obtained in the linear-response regime and quantitatively agree with the available experimental data. Moreover, the time-domain approach to ECD allows us to naturally go beyond the ground-state rotationally averaged ECD spectrum, which is the standard outcome of the linear-response theory, e.g., by computing the ECD spectra from electronic excited states.
Collapse
Affiliation(s)
- M Monti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - M Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
6
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
7
|
Dall’Osto G, Corni S. Time Resolved Raman Scattering of Molecules: A Quantum Mechanics Approach with Stochastic Schroedinger Equation. J Phys Chem A 2022; 126:8088-8100. [PMID: 36278928 PMCID: PMC9639147 DOI: 10.1021/acs.jpca.2c05245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Raman scattering is a very powerful tool employed to
characterize
molecular systems. Here we propose a novel theoretical strategy to
calculate the Raman cross-section in time domain, by computing the
cumulative Raman signal emitted during the molecular evolution in
time. Our model is based on a numerical propagation of the vibronic
wave function under the effect of a light pulse of arbitrary shape.
This approach can therefore tackle a variety of experimental setups.
Both resonance and nonresonance Raman scattering can be retrieved,
and also the time-dependent fluorescence emission is computed. The
model has been applied to porphyrin considering both resonance and
nonresonance conditions and varying the incident field duration. Moreover
the effect of the vibrational relaxation, which should be taken into
account when its time scale is similar to that of the Raman emission,
has been included through the stochastic Schroedinger equation approach.
Collapse
Affiliation(s)
- Giulia Dall’Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, 41125, Italy
| |
Collapse
|
8
|
Marsili M, Corni S. Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:8768-8776. [PMID: 35655939 PMCID: PMC9150096 DOI: 10.1021/acs.jpcc.2c02209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The efficiency of plasmonic metallic nanoparticles in harvesting and concentrating light energy in their proximity triggers a wealth of important and intriguing phenomena. For example, spectroscopies are able to reach single-molecule and intramolecule sensitivities, and important chemical reactions can be effectively photocatalyzed. For the real-time description of the coupled dynamics of a molecule's electronic system and of a plasmonic nanoparticle, a methodology has been recently proposed (J. Phys. Chem. C. 120, 2016, 28774-28781) which combines the classical description of the nanoparticle as a polarizable continuum medium with a quantum-mechanical description of the molecule treated at the time-dependent configuration interaction (TDCI) level. In this work, we extend this methodology by describing the molecule using many-body perturbation theory: the molecule's excitation energies, transition dipoles, and potentials computed at the GW/Bethe-Salpeter equation (BSE) level. This allows us to overcome current limitations of TDCI in terms of achievable accuracy without compromising on the accessible molecular sizes. We illustrate the developed scheme by characterizing the coupled nanoparticle/molecule dynamics of two prototype molecules, LiCN and p-nitroaniline.
Collapse
Affiliation(s)
- Margherita Marsili
- Dipartimento
di Science Chimiche, Università di
Padova, via F. Marzolo 1, I-35131, Padova, Italy
| | - Stefano Corni
- Dipartimento
di Science Chimiche, Università di
Padova, via F. Marzolo 1, I-35131, Padova, Italy
- CNR
Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
9
|
Fregoni J, Garcia-Vidal FJ, Feist J. Theoretical Challenges in Polaritonic Chemistry. ACS PHOTONICS 2022; 9:1096-1107. [PMID: 35480492 PMCID: PMC9026242 DOI: 10.1021/acsphotonics.1c01749] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes to enable new chemical reactivities. In systems displaying this functionality, the choice of the cavity determines both the confinement of the electromagnetic field and the number of molecules that are involved in the process. While in wavelength-scale optical cavities the light-matter interaction is ruled by collective effects, plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling. Due to these very distinct situations, a multiscale theoretical toolbox is then required to explore the rich phenomenology of polaritonic chemistry. Within this framework, each component of the system (molecules and electromagnetic modes) needs to be treated in sufficient detail to obtain reliable results. Starting from the very general aspects of light-molecule interactions in typical experimental setups, we underline the basic concepts that should be taken into account when operating in this new area of research. Building on these considerations, we then provide a map of the theoretical tools already available to tackle chemical applications of molecular polaritons at different scales. Throughout the discussion, we draw attention to both the successes and the challenges still ahead in the theoretical description of polaritonic chemistry.
Collapse
Affiliation(s)
- Jacopo Fregoni
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Francisco J. Garcia-Vidal
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
Grobas Illobre P, Marsili M, Corni S, Stener M, Toffoli D, Coccia E. Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms. J Chem Theory Comput 2021; 17:6314-6329. [PMID: 34486881 PMCID: PMC8515806 DOI: 10.1021/acs.jctc.1c00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/16/2022]
Abstract
In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag22. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.
Collapse
Affiliation(s)
- P. Grobas Illobre
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - M. Marsili
- Dipartimento
di Scienze Chimiche, Universitá di
Padova, via Marzolo 1, Padova 35131, Italy
| | - S. Corni
- Dipartimento
di Scienze Chimiche, Universitá di
Padova, via Marzolo 1, Padova 35131, Italy
- CNR
Istituto di Nanoscienze, via Campi 213/A, Modena 41125, Italy
| | - M. Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - D. Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - E. Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| |
Collapse
|
11
|
Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S. Hybrid theoretical models for molecular nanoplasmonics. J Chem Phys 2020; 153:200901. [PMID: 33261492 DOI: 10.1063/5.0027935] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multidisciplinary nature of the research in molecular nanoplasmonics, i.e., the use of plasmonic nanostructures to enhance, control, or suppress properties of molecules interacting with light, led to contributions from different theory communities over the years, with the aim of understanding, interpreting, and predicting the physical and chemical phenomena occurring at molecular- and nano-scale in the presence of light. Multiscale hybrid techniques, using a different level of description for the molecule and the plasmonic nanosystems, permit a reliable representation of the atomistic details and of collective features, such as plasmons, in such complex systems. Here, we focus on a selected set of topics of current interest in molecular plasmonics (control of electronic excitations in light-harvesting systems, polaritonic chemistry, hot-carrier generation, and plasmon-enhanced catalysis). We discuss how their description may benefit from a hybrid modeling approach and what are the main challenges for the application of such models. In doing so, we also provide an introduction to such models and to the selected topics, as well as general discussions on their theoretical descriptions.
Collapse
Affiliation(s)
- E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universit di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universit di Modena e Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - C A Guido
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - M Marsili
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - S Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - S Corni
- Istituto Nanoscienze-CNR, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
12
|
Fregoni J, Corni S, Persico M, Granucci G. Photochemistry in the strong coupling regime: A trajectory surface hopping scheme. J Comput Chem 2020; 41:2033-2044. [PMID: 32609934 PMCID: PMC7891387 DOI: 10.1002/jcc.26369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
The strong coupling regime between confined light and organic molecules turned out to be promising in modifying both the ground state and the excited states properties. Under this peculiar condition, the electronic states of the molecule are mixed with the quantum states of light. The dynamical processes occurring on such hybrid states undergo several modifications accordingly. Hence, the dynamical description of chemical reactivity in polaritonic systems needs to explicitly take into account the photon degrees of freedom and nonadiabatic events. With the aim of describing photochemical polaritonic processes, in the present work, we extend the direct trajectory surface hopping scheme to investigate photochemistry under strong coupling between light and matter.
Collapse
Affiliation(s)
- Jacopo Fregoni
- Dipartimento di Scienze Fisiche Informatiche e MatematicheUniversity of Modena and Reggio EmiliaModenaItaly
| | - Stefano Corni
- Dipartimento di Scienze ChimicheUniversity of PadovaPadovaItaly
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaPisaItaly
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaPisaItaly
| |
Collapse
|
13
|
Dall'Osto G, Coccia E, Guido CA, Corni S. Investigating ultrafast two-pulse experiments on single DNQDI fluorophores: a stochastic quantum approach. Phys Chem Chem Phys 2020; 22:16734-16746. [PMID: 32658228 DOI: 10.1039/d0cp02557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultrafast two-pulse experiments on single molecules are invaluable tools to investigate the microscopic dynamics of a fluorophore. The first pulse generates electronic or vibronic coherence and the second pulse probes the time-evolution of the coherence. A protocol that is able to simulate ultrafast experiments on single molecules is applied in this study. It is based on a coupled quantum-mechanical description of the fluorophore and real-time dynamics of the system vibronic wave packet interacting with an electric field, described by means of the stochastic Schrödinger equation within the Markovian limit. This approach is applied to the DNQDI fluorophore, previously investigated experimentally [D. Brinks et al., Nature, 2010, 465, 905-908]. We find this to be in good agreement with the experimental outcomes and provide microscopic and atomistic interpretation.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- E. Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Trieste, Italy
| |
Collapse
|
15
|
Guido CA, Rosa M, Cammi R, Corni S. An open quantum system theory for polarizable continuum models. J Chem Phys 2020; 152:174114. [DOI: 10.1063/5.0003523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ciro A. Guido
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Marta Rosa
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Roberto Cammi
- Dipartimento di Chimica, Scienze della Vita e Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
- CNR Istituto Nanoscienze, Modena, Italy
| |
Collapse
|
16
|
Coccia E, Corni S. Role of coherence in the plasmonic control of molecular absorption. J Chem Phys 2019; 151:044703. [PMID: 31370514 DOI: 10.1063/1.5109378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The interpretation of nanoplasmonic effects on molecular properties, such as metal-enhanced absorption or fluorescence, typically assumes a fully coherent picture (in the quantum-mechanical sense) of the phenomena. Yet, there may be conditions where the coherent picture breaks down, and the decoherence effect should be accounted for. Using a state-of-the-art multiscale model approach able to include environment-induced dephasing, here we show that metal nanoparticle effects on the light absorption by a nearby molecule is strongly affected (even qualitatively, i.e., suppression vs enhancement) by molecular electronic decoherence. The present work shows that decoherence can be thought of as a further design element of molecular nanoplasmonic systems.
Collapse
Affiliation(s)
- Emanuele Coccia
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| |
Collapse
|
17
|
|
18
|
Gelin MF, Palacino-González E, Chen L, Domcke W. Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study. Molecules 2019; 24:E231. [PMID: 30634541 PMCID: PMC6359062 DOI: 10.3390/molecules24020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/03/2022] Open
Abstract
We explore, by theoretical modeling and computer simulations, how nonadiabatic couplings of excited electronic states of a polyatomic chromophore manifest themselves in single-molecule signals on femtosecond timescales. The chromophore is modeled as a system with three electronic states (the ground state and two non-adiabatically coupled excited states) and a Condon-active vibrational mode which, in turn, is coupled to a harmonic oscillator heat bath. For this system, we simulate double-pump single-molecule signals with fluorescence detection for different system-field interaction strengths, from the weak-coupling regime to the strong-coupling regime. While the signals are determined by the coherence of the electronic density matrix in the weak-coupling regime, they are determined by the populations of the electronic density matrix in the strong-coupling regime. As a consequence, the signals in the strong coupling regime allow the monitoring of nonadiabatic electronic population dynamics and are robust with respect to temporal inhomogeneity of the optical gap, while signals in the weak-coupling regime are sensitive to fluctuations of the optical gap and do not contain information on the electronic population dynamics.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.
| | | | - Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.
| |
Collapse
|