• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (2594)   Subscriber (50687)
For: Nguyen TT, Székely E, Imbalzano G, Behler J, Csányi G, Ceriotti M, Götz AW, Paesani F. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. J Chem Phys 2018;148:241725. [DOI: 10.1063/1.5024577] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
Number Cited by Other Article(s)
1
Palos E, Bull-Vulpe EF, Zhu X, Agnew H, Gupta S, Saha S, Paesani F. Current Status of the MB-pol Data-Driven Many-Body Potential for Predictive Simulations of Water Across Different Phases. J Chem Theory Comput 2024;20:9269-9289. [PMID: 39401055 DOI: 10.1021/acs.jctc.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
2
Manchev Y, Popelier PLA. Modeling Many-Body Interactions in Water with Gaussian Process Regression. J Phys Chem A 2024;128:9345-9351. [PMID: 39393086 PMCID: PMC11514001 DOI: 10.1021/acs.jpca.4c05873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
3
Yang ZX, Xie XT, Kang PL, Wang ZX, Shang C, Liu ZP. Many-Body Function Corrected Neural Network with Atomic Attention (MBNN-att) for Molecular Property Prediction. J Chem Theory Comput 2024. [PMID: 39034686 DOI: 10.1021/acs.jctc.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
4
Choyal V, Sagar N, Sai Gautam G. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts. J Chem Theory Comput 2024;20:4844-4856. [PMID: 38787289 DOI: 10.1021/acs.jctc.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
5
Duignan TT. The Potential of Neural Network Potentials. ACS PHYSICAL CHEMISTRY AU 2024;4:232-241. [PMID: 38800721 PMCID: PMC11117678 DOI: 10.1021/acsphyschemau.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 05/29/2024]
6
Montero de Hijes P, Dellago C, Jinnouchi R, Schmiedmayer B, Kresse G. Comparing machine learning potentials for water: Kernel-based regression and Behler-Parrinello neural networks. J Chem Phys 2024;160:114107. [PMID: 38506284 DOI: 10.1063/5.0197105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]  Open
7
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O2. J Phys Chem A 2024;128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
8
Vennelakanti V, Kilic IB, Terrones GG, Duan C, Kulik HJ. Machine Learning Prediction of the Experimental Transition Temperature of Fe(II) Spin-Crossover Complexes. J Phys Chem A 2024;128:204-216. [PMID: 38148525 DOI: 10.1021/acs.jpca.3c07104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
9
Teng C, Huang D, Donahue E, Bao JL. Exploring torsional conformer space with physical prior mean function-driven meta-Gaussian processes. J Chem Phys 2023;159:214111. [PMID: 38051097 DOI: 10.1063/5.0176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]  Open
10
Muniz MC, Car R, Panagiotopoulos AZ. Neural Network Water Model Based on the MB-Pol Many-Body Potential. J Phys Chem B 2023;127:9165-9171. [PMID: 37824703 DOI: 10.1021/acs.jpcb.3c04629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
11
Yang J, Chen Z, Sun H, Samanta A. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework. J Chem Theory Comput 2023;19:5910-5923. [PMID: 37581304 DOI: 10.1021/acs.jctc.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
12
Guidarelli Mattioli F, Sciortino F, Russo J. Are Neural Network Potentials Trained on Liquid States Transferable to Crystal Nucleation? A Test on Ice Nucleation in the mW Water Model. J Phys Chem B 2023;127:3894-3901. [PMID: 37075256 PMCID: PMC10165654 DOI: 10.1021/acs.jpcb.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Indexed: 04/21/2023]
13
Heindel JP, Herman KM, Xantheas SS. Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development. Annu Rev Phys Chem 2023;74:337-360. [PMID: 37093659 DOI: 10.1146/annurev-physchem-062422-023532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
14
Guidarelli Mattioli F, Sciortino F, Russo J. A neural network potential with self-trained atomic fingerprints: A test with the mW water potential. J Chem Phys 2023;158:104501. [PMID: 36922151 DOI: 10.1063/5.0139245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]  Open
15
Burn M, Popelier PLA. Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments. J Chem Theory Comput 2023;19:1370-1380. [PMID: 36757024 PMCID: PMC9979601 DOI: 10.1021/acs.jctc.2c00731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
16
Zhang Y, Lin Q, Jiang B. Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
17
Bull-Vulpe EF, Riera M, Bore SL, Paesani F. Data-Driven Many-Body Potential Energy Functions for Generic Molecules: Linear Alkanes as a Proof-of-Concept Application. J Chem Theory Comput 2022. [PMID: 36113028 DOI: 10.1021/acs.jctc.2c00645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Fedik N, Zubatyuk R, Kulichenko M, Lubbers N, Smith JS, Nebgen B, Messerly R, Li YW, Boldyrev AI, Barros K, Isayev O, Tretiak S. Extending machine learning beyond interatomic potentials for predicting molecular properties. Nat Rev Chem 2022;6:653-672. [PMID: 37117713 DOI: 10.1038/s41570-022-00416-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
19
Zhu X, Iyengar SS. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. J Chem Theory Comput 2022;18:5125-5144. [PMID: 35994592 DOI: 10.1021/acs.jctc.1c01241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
20
Sun J, Cheng L, Miller TF. Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning. J Chem Phys 2022;157:104109. [DOI: 10.1063/5.0101280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
21
Cheng L, Sun J, Miller TF. Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space. J Chem Theory Comput 2022;18:4826-4835. [PMID: 35858242 DOI: 10.1021/acs.jctc.2c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Lu F, Cheng L, DiRisio RJ, Finney JM, Boyer MA, Moonkaen P, Sun J, Lee SJR, Deustua JE, Miller TF, McCoy AB. Fast Near Ab Initio Potential Energy Surfaces Using Machine Learning. J Phys Chem A 2022;126:4013-4024. [PMID: 35715227 DOI: 10.1021/acs.jpca.2c02243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
23
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. The MD17 datasets from the perspective of datasets for gas-phase “small” molecule potentials. J Chem Phys 2022;156:240901. [DOI: 10.1063/5.0089200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Liu J, Lan J, He X. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. J Phys Chem A 2022;126:3926-3936. [PMID: 35679610 DOI: 10.1021/acs.jpca.2c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Moradzadeh A, Aluru NR. Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water. J Phys Chem A 2022;126:2031-2041. [PMID: 35316059 DOI: 10.1021/acs.jpca.1c09786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
26
Fabregat R, Fabrizio A, Engel EA, Meyer B, Juraskova V, Ceriotti M, Corminboeuf C. Local Kernel Regression and Neural Network Approaches to the Conformational Landscapes of Oligopeptides. J Chem Theory Comput 2022;18:1467-1479. [PMID: 35179897 PMCID: PMC8908737 DOI: 10.1021/acs.jctc.1c00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/30/2022]
27
Xia D, Chen J, Fu Z, Xu T, Wang Z, Liu W, Xie HB, Peijnenburg WJGM. Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022;56:2115-2123. [PMID: 35084191 DOI: 10.1021/acs.est.1c05970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
28
Zeng C, Chen X, Peterson AA. A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures. J Chem Phys 2022;156:064104. [DOI: 10.1063/5.0079314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
29
Houston PL, Qu C, Nandi A, Conte R, Yu Q, Bowman JM. Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods. J Chem Phys 2022;156:044120. [DOI: 10.1063/5.0080506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
30
Theoretical Description of Water from Single-Molecule to Condensed Phase: a Review of Recent Progress on Potential Energy Surfaces and Molecular Dynamics. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
31
Yang Z, Chen H, Chen M. Representing Globally Accurate Reactive Potential Energy Surfaces with Complex Topography by Combining Gaussian Process Regression and Neural Network. Phys Chem Chem Phys 2022;24:12827-12836. [DOI: 10.1039/d2cp00719c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Li Y, Liu J, Li J, Zhai Y, Yang J, Qu Z, Li H. A new permutation-symmetry-adapted machine learning diabatization procedure and its application in MgH2 system. J Chem Phys 2021;155:214102. [PMID: 34879675 DOI: 10.1063/5.0072004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Xu M, Zhu T, Zhang JZH. Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method. J Chem Inf Model 2021;61:5425-5437. [PMID: 34752095 DOI: 10.1021/acs.jcim.1c01125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
34
Symons BCB, Bane MK, Popelier PLA. DL_FFLUX: A Parallel, Quantum Chemical Topology Force Field. J Chem Theory Comput 2021;17:7043-7055. [PMID: 34617748 PMCID: PMC8582247 DOI: 10.1021/acs.jctc.1c00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Broad J, Preston S, Wheatley RJ, Graham RS. Gaussian process models of potential energy surfaces with boundary optimization. J Chem Phys 2021;155:144106. [PMID: 34654292 DOI: 10.1063/5.0063534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
36
Lambros E, Dasgupta S, Palos E, Swee S, Hu J, Paesani F. General Many-Body Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J Chem Theory Comput 2021;17:5635-5650. [PMID: 34370954 DOI: 10.1021/acs.jctc.1c00541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
37
Monu, Oram BK, Bandyopadhyay B. A unified cost-effective method for the construction of reliable potential energy surfaces for H2S and H2O clusters. Phys Chem Chem Phys 2021;23:18044-18057. [PMID: 34387290 DOI: 10.1039/d1cp01544c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
38
Wang J, Charron N, Husic B, Olsson S, Noé F, Clementi C. Multi-body effects in a coarse-grained protein force field. J Chem Phys 2021;154:164113. [PMID: 33940848 DOI: 10.1063/5.0041022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]  Open
39
Musil F, Grisafi A, Bartók AP, Ortner C, Csányi G, Ceriotti M. Physics-Inspired Structural Representations for Molecules and Materials. Chem Rev 2021;121:9759-9815. [PMID: 34310133 DOI: 10.1021/acs.chemrev.1c00021] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
40
Noguere G, Scotta JP, Xu S, Farhi E, Ollivier J, Calzavarra Y, Rols S, Koza M, Marquez Damian JI. Temperature-dependent dynamic structure factors for liquid water inferred from inelastic neutron scattering measurements. J Chem Phys 2021;155:024502. [PMID: 34266266 DOI: 10.1063/5.0055779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
41
DiRisio RJ, Lu F, McCoy AB. GPU-Accelerated Neural Network Potential Energy Surfaces for Diffusion Monte Carlo. J Phys Chem A 2021;125:5849-5859. [PMID: 34165989 DOI: 10.1021/acs.jpca.1c03709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
42
Cruzeiro VWD, Lambros E, Riera M, Roy R, Paesani F, Götz AW. Highly Accurate Many-Body Potentials for Simulations of N2O5 in Water: Benchmarks, Development, and Validation. J Chem Theory Comput 2021;17:3931-3945. [PMID: 34029079 DOI: 10.1021/acs.jctc.1c00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
43
Laurens G, Rabary M, Lam J, Peláez D, Allouche AR. Infrared spectra of neutral polycyclic aromatic hydrocarbons based on machine learning potential energy surface and dipole mapping. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02773-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
44
Berressem F, Scherer C, Andrienko D, Nikoubashman A. Ultra-coarse-graining of homopolymers in inhomogeneous systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021;33:254002. [PMID: 33845463 DOI: 10.1088/1361-648x/abf6e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
45
Mistry A, Franco AA, Cooper SJ, Roberts SA, Viswanathan V. How Machine Learning Will Revolutionize Electrochemical Sciences. ACS ENERGY LETTERS 2021;6:1422-1431. [PMID: 33869772 PMCID: PMC8042659 DOI: 10.1021/acsenergylett.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
46
Behler J. Four Generations of High-Dimensional Neural Network Potentials. Chem Rev 2021;121:10037-10072. [DOI: 10.1021/acs.chemrev.0c00868] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
47
Musil F, Veit M, Goscinski A, Fraux G, Willatt MJ, Stricker M, Junge T, Ceriotti M. Efficient implementation of atom-density representations. J Chem Phys 2021;154:114109. [DOI: 10.1063/5.0044689] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
48
Robertson C, Hyland R, Lacey AJD, Havens S, Habershon S. Identifying Barrierless Mechanisms for Benzene Formation in the Interstellar Medium Using Permutationally Invariant Reaction Discovery. J Chem Theory Comput 2021;17:2307-2322. [DOI: 10.1021/acs.jctc.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
49
Allen AEA, Dusson G, Ortner C, Csányi G. Atomic permutationally invariant polynomials for fitting molecular force fields. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abd51e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
50
Eraković M, Cvitaš MT. Tunnelling splitting patterns in some partially deuterated water trimers. Phys Chem Chem Phys 2021;23:4240-4254. [PMID: 33586727 DOI: 10.1039/d0cp06135b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA