1
|
Din M, Paul S, Ullah S, Yang H, Xu RG, Abidin NAZ, Sun A, Chen YC, Gao R, Chowdhury B, Zhou F, Rogers S, Miller M, Biswas A, Hu L, Fan Z, Zahner C, Fan J, Chen Z, Berman M, Xue L, Ju LA, Chen Y. Multi-parametric thrombus profiling microfluidics detects intensified biomechanical thrombogenesis associated with hypertension and aging. Nat Commun 2024; 15:9067. [PMID: 39433750 PMCID: PMC11494109 DOI: 10.1038/s41467-024-53069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Arterial thrombosis is a leading cause of death and disability worldwide with no effective bioassay for clinical prediction. As a symbolic feature of arterial thrombosis, severe stenosis in the blood vessel creates a high-shear, high-gradient flow environment that facilitates platelet aggregation towards vessel occlusion. Here, we present a thrombus profiling assay that monitors the multi-dimensional attributes of thrombi forming in such biomechanical conditions. Using this assay, we demonstrate that different receptor-ligand interactions contribute distinctively to the composition and activation status of the thrombus. Our investigation into hypertensive and older individuals reveals intensified biomechanical thrombogenesis and multi-dimensional thrombus profile abnormalities, endorsing the diagnostic potential of the assay. Furthermore, we identify the hyperactivity of GPIbα-integrin αIIbβ3 mechanosensing axis as a molecular mechanism that contributes to hypertension-associated arterial thrombosis. By studying drug-disease interactions and inter-individual variability, our work reveals a need for personalized anti-thrombotic drug selection that accommodates each patient's pathological profile.
Collapse
Affiliation(s)
- Misbahud Din
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Souvik Paul
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sana Ullah
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haoyi Yang
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Rong-Guang Xu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Allan Sun
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yiyao Catherine Chen
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Rui Gao
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bari Chowdhury
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Fangyuan Zhou
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Stephenie Rogers
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariel Miller
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Atreyee Biswas
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Liang Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Christopher Zahner
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jing Fan
- Department of Mechanical Engineering, The City University of New York - City College, New York, NY, 10031, USA
| | - Zi Chen
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Megan Berman
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lingzhou Xue
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Din M, Paul S, Ullah S, Yang H, Xu RG, Abidin NAZ, Sun A, Chen YC, Gao R, Chowdhury B, Zhou F, Rogers S, Miller M, Biswas A, Hu L, Fan Z, Zahner C, Fan J, Chen Z, Berman M, Xue L, Ju LA, Chen Y. Multi-parametric thrombus profiling microfluidics detects intensified biomechanical thrombogenesis associated with hypertension and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598290. [PMID: 38915705 PMCID: PMC11195082 DOI: 10.1101/2024.06.11.598290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Arterial thrombosis, which represents a critical complication of cardiovascular diseases, is a leading cause of death and disability worldwide with no effective bioassay for clinical prediction. As a symbolic feature of arterial thrombosis, severe stenosis in the blood vessel creates a high-shear, high-gradient flow environment that effectively facilitates platelet aggregation towards vessel occlusion even with platelet amplification loops inhibited. However, no approach is currently available to comprehensively characterize the size, composition and platelet activation status of thrombi forming under this biorheological condition. Here, we present a thrombus profiling assay that monitors the multi-dimensional attributes of thrombi forming in conditions mimicking the physiological scenario of arterial thrombosis. Using this platform, we demonstrate that different receptor-ligand interactions contribute distinctively to the composition and activation status of the thrombus. Our investigation into hypertensive and older individuals reveals intensified biomechanical thrombogenesis and multi-dimensional thrombus profile abnormalities, demonstrating a direct contribution of mechanobiology to arterial thrombosis and endorsing the diagnostic potential of the assay. Furthermore, we identify the hyperactivity of GPIbα-integrin αIIbβ3 mechanosensing axis as a molecular mechanism that contributes to hypertension-associated arterial thrombosis. By studying the interactions between anti-thrombotic inhibitors and hypertension, and the inter-individual variability in personal thrombus profiles, our work reveals a critical need for personalized anti-thrombotic drug selection that accommodates each patient's pathological profile.
Collapse
Affiliation(s)
- Misbahud Din
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Souvik Paul
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Sana Ullah
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Haoyi Yang
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rong-Guang Xu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Division of Thoracic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Allan Sun
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| | - Yiyao Catherine Chen
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Rui Gao
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Bari Chowdhury
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Fangyuan Zhou
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Stephenie Rogers
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Mariel Miller
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Atreyee Biswas
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Liang Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut 06030, USA
| | - Christopher Zahner
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Jing Fan
- Department of Mechanical Engineering, The City University of New York - City College, New York, New York 10031, USA
| | - Zi Chen
- Division of Thoracic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Megan Berman
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Lingzhou Xue
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
3
|
Huang Y, Wang J, Guo Y, Shen L, Li Y. Fibrinogen binding to activated platelets and its biomimetic thrombus-targeted thrombolytic strategies. Int J Biol Macromol 2024; 274:133286. [PMID: 38908635 DOI: 10.1016/j.ijbiomac.2024.133286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Thrombosis is associated with various fatal arteriovenous syndromes including ischemic stroke, myocardial infarction, and pulmonary embolism. However, current clinical thrombolytic treatment strategies still have many problems in targeting and safety to meet the thrombolytic therapy needs. Understanding the molecular mechanism that underlies thrombosis is critical in developing effective thrombolytic strategies. It is well known that platelets play a central role in thrombosis and the binding of fibrinogen to activated platelets is a common pathway in the process of clot formation. Based on this, a concept of biomimetic thrombus-targeted thrombolytic strategy inspired from fibrinogen binding to activated platelets in thrombosis was proposed, which could selectively bind to activated platelets at a thrombus site, thus enabling targeted delivery and local release of thrombolytic agents for effective thrombolysis. In this review, we first summarized the main characteristics of platelets and fibrinogen, and then introduced the classical molecular mechanisms of thrombosis, including platelet adhesion, platelet activation and platelet aggregation through the interactions of activated platelets with fibrinogen. In addition, we highlighted the recent advances in biomimetic thrombus-targeted thrombolytic strategies which inspired from fibrinogen binding to activated platelets in thrombosis. The possible future directions and perspectives in this emerging area are briefly discussed.
Collapse
Affiliation(s)
- Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China.
| | - Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China
| | - Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China
| | - Lingyue Shen
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stoma-tology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, PR China.
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China.
| |
Collapse
|
4
|
V L Leonard S, Liddle CR, Atherall CA, Chapman E, Watkins M, D J Calaminus S, Rotchell JM. Microplastics in human blood: Polymer types, concentrations and characterisation using μFTIR. ENVIRONMENT INTERNATIONAL 2024; 188:108751. [PMID: 38761430 DOI: 10.1016/j.envint.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Microplastics (MPs) are an everyday part of life, and are now ubiquitous in the environment. Crucially, MPs have not just been found within the environment, but also within human bodies, including the blood. We aimed to provide novel information on the range of MP polymer types present, as well as their size and shape characteristics, in human whole blood from 20 healthy volunteers. Twenty-four polymer types were identified from 18 out of 20 (90 %) donors and quantified in blood, with the majority observed for the first time. Using an LOQ approach, five polymer types met the threshold with a lower mean ± SD of 2466 ± 4174 MP/L. The concentrations of plastics analysed in blood samples ranged from 1.84 - 4.65 μg/mL. Polyethylene (32 %), ethylene propylene diene (14 %), and ethylene-vinyl-acetate/alcohol (12 %) fragments were the most abundant. MP particles that were identified within the blood samples had a mean particle length of 127.99 ± 293.26 µm (7-3000 µm), and a mean particle width of 57.88 ± 88.89 µm (5-800 µm). The MPs were predominantly categorised as fragments (88 %) and were white/clear (79 %). A variety of plastic additive chemicals were identified including endocrine disrupting-classed phthalates. The procedural blank samples comprised 7 polymer types, that were distinct from those identified in blood, mainly resin (25 %), polyethylene terephthalate (17 %), and polystyrene (17 %) with a mean ± SD of 4.80 ± 5.59 MP/L. This study adds to the growing evidence that MPs are taken up into the human body and are transported via the bloodstream. The shape and sizes of the particles raise important questions with respect to their presence and associated hazards in terms of potential detrimental impacts such as vascular inflammation, build up within major organs, and changes to either immune cell response, or haemostasis and thrombosis.
Collapse
Affiliation(s)
- Sophie V L Leonard
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Catriona R Liddle
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Charlotte A Atherall
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Emma Chapman
- School of Natural Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Matthew Watkins
- College of Health and Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom
| | - Simon D J Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom.
| | - Jeanette M Rotchell
- School of Natural Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom; College of Health and Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom.
| |
Collapse
|
5
|
Bresette CA, Ashworth KJ, Di Paola J, Ku DN. N-Acetyl Cysteine Prevents Arterial Thrombosis in a Dose-Dependent Manner In Vitro and in Mice. Arterioscler Thromb Vasc Biol 2024; 44:e39-e53. [PMID: 38126172 DOI: 10.1161/atvbaha.123.319044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Platelet-rich thrombi occlude arteries causing fatal infarcts like heart attacks and strokes. Prevention of thrombi by current antiplatelet agents can cause major bleeding. Instead, we propose using N-acetyl cysteine (NAC) to act against the protein VWF (von Willebrand factor), and not platelets, to prevent arterial thrombi from forming. METHODS NAC was assessed for its ability to prevent arterial thrombosis by measuring platelet accumulation rate and occlusion time using a microfluidic model of arterial thrombosis with human blood. Acute clot formation, clot stability, and tail bleeding were measured in vivo with the murine modified Folts model. The effect of NAC in the murine model after 6 hours was also measured to determine any persistent effects of NAC after it has been cleared from the blood. RESULTS We demonstrate reduction of thrombi formation following treatment with NAC in vitro and in vivo. Human whole blood treated with 3 or 5 mmol/L NAC showed delayed thrombus formation 2.0× and 3.7× longer than control, respectively (P<0.001). Blood treated with 10 mmol/L NAC did not form an occlusive clot, and no macroscopic platelet aggregation was visible (P<0.001). In vivo, a 400-mg/kg dose of NAC prevented occlusive clots from forming in mice without significantly affecting tail bleeding times. A lower dose of NAC significantly reduced clot stability. Mice given multiple injections showed that NAC has a lasting and cumulative effect on clot stability, even after being cleared from the blood (P<0.001). CONCLUSIONS Both preclinical models demonstrate that NAC prevents thrombus formation in a dose-dependent manner without significantly affecting bleeding time. This work highlights a new pathway for preventing arterial thrombosis, different from antiplatelet agents, using an amino acid derivative as an antithrombotic therapeutic.
Collapse
Affiliation(s)
- Christopher A Bresette
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (C.A.B., D.N.K.)
| | - Katrina J Ashworth
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine in St. Louis, MO (K.J.A., J.D.P.)
| | - Jorge Di Paola
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine in St. Louis, MO (K.J.A., J.D.P.)
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (C.A.B., D.N.K.)
| |
Collapse
|
6
|
Christodoulides A, Hall A, Alves NJ. Exploring microplastic impact on whole blood clotting dynamics utilizing thromboelastography. Front Public Health 2023; 11:1215817. [PMID: 37521965 PMCID: PMC10372794 DOI: 10.3389/fpubh.2023.1215817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
This study investigates the influence of microplastics on blood clotting. It addresses the lack of comprehensive research on the effects of microplastic size and surface modification on clotting dynamics in human whole blood. Thromboelastography was used to examine aminated (aPS), carboxylated (cPS), and non-functionalized (nPS) polystyrene particles with sizes of 50, 100, and 500 nm. Results show that cPS consistently activated the clotting cascade, demonstrating increased fibrin polymerization rates, and enhanced clot strength in a size and concentration-dependent manner. nPS had minimal effects on clotting dynamics except for 50 nm particles at the lowest concentration. The clotting effects of aPS (100 nm particles) resembled those of cPS but were diminished in the 500 nm aPS group. These findings emphasize the importance of microplastic surface modification, size, concentration, and surface area on in-vitro whole blood clotting dynamics.
Collapse
Affiliation(s)
- Alexei Christodoulides
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abigail Hall
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nathan J. Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023; 12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 12/14/2022]
Abstract
A thrombus is a blood clot that forms in the lumen of an artery or vein, restricting blood flow and causing clinical symptoms. Thrombosis is associated with many life-threatening cardiovascular diseases. However, current clinical therapeutic technologies still have many problems in targeting, enrichment, penetration, and safety to meet the thrombosis treatment needs. Therefore, researchers devote themselves to developing nanosystems loaded with antithrombotic drugs to address this paradox in recent years. Herein, the existing thrombosis treatment technologies are first reviewed; and then, their advantages and disadvantages are outlined based on a brief discussion of thrombosis's definition and formation mechanism. Furthermore, the need and application cases for introducing nanotechnology are discussed, focusing on thrombus-specific targeted ligand modification technology and microenvironment-triggered responsive drug release technology. Then, nanomaterials that can be used to design antithrombotic nanotherapeutic systems are summarized. Moreover, a variety of drug delivery technologies driven by nanomotors in thrombosis therapy is also introduced. Last of all, a prospective discussion on the future development of nanotechnology for thrombosis therapy is highlighted.
Collapse
Affiliation(s)
- Shuyin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
8
|
Tran DQ, Stelflug N, Hall A, Nallan Chakravarthula T, Alves NJ. Microplastic Effects on Thrombin-Fibrinogen Clotting Dynamics Measured via Turbidity and Thromboelastography. Biomolecules 2022; 12:biom12121864. [PMID: 36551292 PMCID: PMC9775992 DOI: 10.3390/biom12121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Micro/nanoplastics, whether manufactured or resulting from environmental degradation, can enter the body through ingestion, inhalation, or dermal pathways. Previous research has found that nanoplastics with diameters of ≤100 nm can translocate into the circulatory system in a dose-dependent manner and potentially impact thrombosis and hemostasis. To investigate the direct effects of microplastics on fibrin clot formation, a simplified ex vivo human thrombin/fibrinogen clot model was utilized. The 100 nm polystyrene particles (non-functionalized [nPS] and aminated [aPS]) were preincubated (0-200 µg/mL) with either thrombin or fibrinogen, and fibrin clot formation was characterized via turbidity and thromboelastography (TEG). When the particles were preincubated with fibrinogen, little effect was observed for aPS or nPS on turbidity or TEG up through 100 µg/mL. TEG results demonstrated a significant impact on clot formation rate and strength, in the case of nPS preincubated with thrombin exhibiting a significant dose-dependent inhibitory effect. In conclusion, the presence of microplastics can have inhibitory effects on fibrin clot formation that are dependent upon both particle surface charge and concentration. Negatively charged nPS exhibited the most significant impacts to clot strength, turbidity, and rate of fibrin formation when first incubated with thrombin, with its impact being greatly diminished when preincubated with fibrinogen in this simplified fibrin clot model.
Collapse
Affiliation(s)
- Daniela Q. Tran
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Nathan Stelflug
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Abigail Hall
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Tanmaye Nallan Chakravarthula
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Nathan J. Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
9
|
Yu H, Palazzolo JS, Ju Y, Niego B, Pan S, Hagemeyer CE, Caruso F. Polyphenol-Functionalized Cubosomes as Thrombolytic Drug Carriers. Adv Healthc Mater 2022; 11:e2201151. [PMID: 36037807 DOI: 10.1002/adhm.202201151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
The safe administration of thrombolytic agents is a challenge for the treatment of acute thrombosis. Lipid-based nanoparticle drug delivery technologies present opportunities to overcome the existing clinical limitations and deliver thrombolytic therapy with enhanced therapeutic outcomes and safety. Herein, lipid cubosomes are examined as nanocarriers for the encapsulation of thrombolytic drugs. The lipid cubosomes are loaded with the thrombolytic drug urokinase-type plasminogen activator (uPA) and coated with a low-fouling peptide that is incorporated within a metal-phenolic network (MPN). The peptide-containing MPN (pep-MPN) coating inhibits the direct contact of uPA with the surrounding environment, as assessed by an in vitro plasminogen activation assay and an ex vivo whole blood clot degradation assay. The pep-MPN-coated cubosomes prepared with 22 wt% peptide demonstrate a cell membrane-dependent thrombolytic activity, which is attributed to their fusogenic lipid behavior. Moreover, compared with the uncoated lipid cubosomes, the uPA-loaded pep-MPN-coated cubosomes demonstrate significantly reduced nonspecific cell association (<10% of the uncoated cubosomes) in the whole blood assay, a prolonged circulating half-life, and reduced splenic uPA accumulation in mice. These studies confirm the preserved bioactivity and cell membrane-dependent release of uPA within pep-MPN-coated lipid cubosomes, highlighting their potential as a delivery vehicle for thrombolytic drugs.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Liu ZL, Bresette C, Aidun CK, Ku DN. SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv 2022; 6:2453-2465. [PMID: 34933342 PMCID: PMC9043924 DOI: 10.1182/bloodadvances.2021005692] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022] Open
Abstract
Shear-induced platelet aggregation (SIPA) occurs under elevated shear rates (10 000 s-1) found in stenotic coronary and carotid arteries. The pathologically high shear environment can lead to occlusive thrombosis by SIPA from the interaction of nonactivated platelets and von Willebrand factor (VWF) via glycoprotein Ib-A1 binding. This process under high shear rates is difficult to visualize experimentally with concurrent molecular- and cellular-resolutions. To understand this fast bonding, we employ a validated multiscale in silico model incorporating measured molecular kinetics and a thrombosis-on-a-chip device to delineate the flow-mediated biophysics of VWF and platelets assembly into mural microthrombi. We show that SIPA begins with VWF elongation, followed by agglomeration of platelets in the flow by soluble VWF entanglement before mural capture of the agglomerate by immobilized VWF. The entire SIPA process occurs on the order of 10 milliseconds with the agglomerate traveling a lag distance of a few hundred microns before capture, matching in vitro results. Increasing soluble VWF concentration by ∼20 times in silico leads to a ∼2 to 3 times increase in SIPA rates, matching the increase in occlusion rates found in vitro. The morphology of mural aggregates is primarily controlled by VWF molecular weight (length), where normal-length VWF leads to cluster or elongated aggregates and ultra-long VWF leads to loose aggregates seen by others' experiments. Finally, we present phase diagrams of SIPA, which provides biomechanistic rationales for a variety of thrombotic and hemostatic events in terms of platelet agglomeration and capture.
Collapse
Affiliation(s)
- Zixiang Leonardo Liu
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | | | - Cyrus K. Aidun
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - David N. Ku
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
11
|
Nanocarrier-Based Management of Venous and Arterial Thrombosis. CRYSTALS 2022. [DOI: 10.3390/cryst12040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cardiovascular diseases represent the leading cause of mortality worldwide, with recent epidemiological studies revealing an increasing trend of prevalence and incidence globally. Among cardiovascular disorders, both arterial and venous thrombosis and particularly their acute life-threating complications such as ischemic stroke, acute myocardial infarction, deep venous thrombosis and pulmonary embolism are responsible for more than 25% of all deaths worldwide. The modern approach following progresses in anticoagulant, thrombolytic and antiaggregant therapies has significantly improved the prognoses of these conditions in the last past decades. However, several challenges still remain such as achieving the optimal drug concentration at the injured site, reducing the shortcomings of drug resistance and the incidence of life-threatening hemorrhages. Nanomedicine is a well-known field of medicine in which atomic and molecular structures ranging between 0.1–100 nm are used in various domains due to their specific mechanical, electrical, thermal and magnetic properties. Recent experimental and clinical evidence have shown that nanotechnology could be a safe, effective and an appealing approach for various non-cardiovascular and cardiovascular diseases such as thromboembolic conditions. In this review, we have described the most promising nanotechnology-based approaches not only for the diagnosis, but also for the treatment of vascular thrombotic diseases.
Collapse
|
12
|
Yu H, Palazzolo JS, Zhou J, Hu Y, Niego B, Pan S, Ju Y, Wang TY, Lin Z, Hagemeyer CE, Caruso F. Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3740-3751. [PMID: 35019268 DOI: 10.1021/acsami.1c19820] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Lett Z, Hall A, Skidmore S, Alves NJ. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118190. [PMID: 34563850 PMCID: PMC11098554 DOI: 10.1016/j.envpol.2021.118190] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 05/27/2023]
Abstract
Plastic pollution has been a growing concern in recent decades due to the proliferation and ease of manufacturing of single use plastic products and inadequate waste and recycling management. Microplastic, and even smaller nanoplastic, particles are persistent pollutants in aquatic and terrestrial systems and are the subject of active and urgent research. This review will explore the current research on how exposure to plastic particles occurs and the risks associated from different exposure routes: ingestion, inhalation, and dermal exposure. The effects of microplastics on the cardiovascular system are of particular importance due to its sensitivity and ability to transport particles to other organ systems. The effects of microplastics and nanoplastics on the heart, platelet aggregation, and thrombus formation will all be explored with focus on how the particle characteristics modulate their effect. Plastic particle interactions are highly dependent on both their size and their surface chemistry and interesting research is being done with the interaction of particle characteristics and effect on thrombosis and the cardiovascular system. There is significant uncertainty surrounding some of the findings in this field as research in this area is still maturing. There are undoubtedly more physiological consequences than we are currently aware of resulting from environmental plastic exposure and more studies need to be conducted to reveal the full extent of pathologies caused by the various routes of microplastic exposure, with particular emphasis on longitudinal exposure effects. Further research will allow us to recognize the full extent of physiological impact and begin developing viable solutions to reduce plastic pollution and potentially design interventions to mitigate in-vivo plastic effects following significant or prolonged exposure.
Collapse
Affiliation(s)
- Zachary Lett
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail Hall
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shelby Skidmore
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan J Alves
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Manning KB, Nicoud F, Shea SM. Mathematical and Computational Modeling of Device-Induced Thrombosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100349. [PMID: 35071850 PMCID: PMC8769491 DOI: 10.1016/j.cobme.2021.100349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given the extensive and routine use of cardiovascular devices, a major limiting factor to their success is the thrombotic rate that occurs. This both poses direct risk to the patient and requires counterbalancing with anticoagulation and other treatment strategies, contributing additional risks. Developing a better understanding of the mechanisms of device-induced thrombosis to aid in device design and medical management of patients is critical to advance the ubiquitous use and durability. Thus, mathematical and computational modelling of device-induced thrombosis has received significant attention recently, but challenges remain. Additional areas that need to be explored include microscopic/macroscopic approaches, reconciling physical and numerical timescales, immune/inflammatory responses, experimental validation, and incorporating pathologies and blood conditions. Addressing these areas will provide engineers and clinicians the tools to provide safe and effective cardiovascular devices.
Collapse
Affiliation(s)
- Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Franck Nicoud
- CNRS, IMAG, Université de Montpellier, Montpellier, France
| | - Susan M. Shea
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
|
16
|
Griffin MT, Ashworth K, Hill N, von Behren J, Di Paola J, Ku DN. Negatively charged nanoparticles of multiple materials inhibit shear-induced platelet accumulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102405. [PMID: 33932591 DOI: 10.1016/j.nano.2021.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/21/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Platelet accumulation by VWF under high shear rates at the site of atherosclerotic plaque rupture leads to myocardial infarction and stroke. Current anti-platelet therapies remain ineffective for a large percentage of the population, while presenting significant risks for bleeding. We explore a novel way to inhibit arterial thrombus formation. Theoretically, a negative charge may influence the tertiary structure of VWF to favor the globular configuration by biophysical means without the use of platelet inactivating drugs. We tested this hypothesis experimentally for charged nanoparticles (CNPs) to inhibit thrombus formation in a microfluidic thrombosis assay (MTA). Several different CNPs demonstrated the ability to retard thrombotic occlusion in the MTA. A preliminary study in mice shows that thrombus stability is weaker with CNP administration and bleeding times are not markedly prolonged. The CNPs tested here show promise as a new class of antithrombotic therapies that act by biophysical means rather than biochemical pathways.
Collapse
Affiliation(s)
- Michael T Griffin
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Katrina Ashworth
- University of Colorado, Anschutz Medical Campus, Pediatrics Hematology, Oncology, Aurora, CO; Washington University School of Medicine, St. Louis, MO
| | - Nathaniel Hill
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Jaydra von Behren
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | | | - David N Ku
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
17
|
Liu ZL, Ku DN, Aidun CK. Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: A multiscale in silico analysis. J Biomech 2021; 120:110349. [PMID: 33711601 DOI: 10.1016/j.jbiomech.2021.110349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Occlusive thrombosis in arteries causes heart attacks and strokes. The rapid growth of thrombus at elevated shear rates (~10,000 1/s) relies on shear-induced platelet aggregation (SIPA) thought to come about from the entanglement of von Willebrand factor (VWF) molecules. The mechanism for SIPA is not yet understood in terms of cell- and molecule-level dynamics in fast flowing bloodstreams. Towards this end, we develop a multiscale computational model to recreate SIPA in silico, where the suspension dynamics and interactions of individual platelets and VWF multimers are resolved directly. The platelet-VWF interaction via GP1b-A1 bonds is prescribed with intrinsic binding rates theoretically derived and informed by single-molecule measurements. The model is validated against existing microfluidic SIPA experiments, showing good agreement with the in vitro observations in terms of the morphology, traveling distance and capture time of the platelet aggregates. Particularly, the capture of aggregates can occur in a few milliseconds, comparable to the platelet transit time through pathologic arterial stenotic sections and much shorter than the time for shear-induced platelet activation. The multiscale SIPA simulator provides a cross-scale tool for exploring the biophysical mechanisms of SIPA in silico that are difficult to access with single-molecule measurements or micro-/macro-fluidic assays only.
Collapse
Affiliation(s)
- Zixiang L Liu
- George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
| | - Cyrus K Aidun
- George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
| |
Collapse
|
18
|
Emerging nanotherapeutics for antithrombotic treatment. Biomaterials 2020; 255:120200. [PMID: 32563945 DOI: 10.1016/j.biomaterials.2020.120200] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Thrombus causes insufficient blood flow and ischemia damages to brain and heart, leading to life-threatening cardio-cerebrovascular diseases. Development of efficient antithrombotic strategies has long been a high priority, owing to the high morbidity and mortality of thrombotic diseases. With the rapid development of biomedical nanotechnology in diagnosis and treatment of thrombotic disorder, remarkable progresses have been made in antithrombotic nanomedicines in recent years. Herein, we outline the recent advances in this field at the intersection of thrombus theranostics and biomedical nanotechnology. First, thrombus diagnosis techniques based on biomedical nanotechnology are presented. Then, emerging antithrombotic nanotherapeutics are overviewed, including thrombus-targeting strategies, thrombus stimuli-responsive nanosystems and phase transition-driven nanotherapeutics. Furthermore, multifunctional nanosystems for combination theranostics of thrombotic diseases are discussed. Finally, the design considerations, advantages and challenges of these biomedical nanotechnology-driven therapeutics in clinical translation are highlighted.
Collapse
|
19
|
Nurhidayah D, Maruf A, Zhang X, Liao X, Wu W, Wang G. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine (Lond) 2019; 14:3105-3122. [PMID: 31823682 DOI: 10.2217/nnm-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.
Collapse
Affiliation(s)
- Deti Nurhidayah
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ali Maruf
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wei Wu
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
20
|
Kim D, Bresette C, Liu Z, Ku DN. Occlusive thrombosis in arteries. APL Bioeng 2019; 3:041502. [PMID: 31768485 PMCID: PMC6863762 DOI: 10.1063/1.5115554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Thrombus formation in major arteries is life threatening. In this review article, we discuss how an arterial thrombus can form under pathologically high shear stresses, with bonding rates estimated to be the fastest Kon values in biochemistry. During occlusive thrombosis in arteries, the growth rate of the thrombus explodes to capture a billion platelets in about 10 min. Close to 100% of all platelets passing the thrombus are captured by long von Willebrand factor (vWF) strands that quickly form tethered nets. The nets grow in patches where shear stress is high, and the local concentration of vWF is elevated due to α-granule release by previously captured platelets. This rapidly formed thrombus has few red blood cells and so has a white appearance and is much stronger and more porous than clots formed through coagulation. Understanding and modeling the biophysics of this event can predict totally new approaches to prevent and treat heart attacks and strokes.
Collapse
Affiliation(s)
- Dongjune Kim
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - Christopher Bresette
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - Zixiang Liu
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - David N Ku
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| |
Collapse
|
21
|
van Rooij BJM, Závodszky G, Azizi Tarksalooyeh VW, Hoekstra AG. Identifying the start of a platelet aggregate by the shear rate and the cell-depleted layer. J R Soc Interface 2019; 16:20190148. [PMID: 31575344 PMCID: PMC6833312 DOI: 10.1098/rsif.2019.0148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Computer simulations were performed to study the transport of red blood cells and platelets in high shear flows, mimicking earlier published in vitro experiments in microfluidic devices with high affinity for platelet aggregate formation. The goal is to understand and predict where thrombus formation starts. Additionally, the need of cell-based modelling in these microfluidic devices is demonstrated by comparing our results with macroscopic models, wherein blood is modelled as a continuous fluid. Hemocell, a cell-based blood flow simulation framework is used to investigate the transport physics in the microfluidic devices. The simulations show an enlarged cell-depleted layer at the site where a platelet aggregate forms in the experiments. In this enlarged cell-depleted layer, the probability to find a platelet is higher than in the rest of the microfluidic device. In addition, the shear rates are sufficiently high to allow for the von Willebrand factor to elongate in this region. We hypothesize that the enlarged cell-depleted layer combined with a sufficiently large platelet flux and sufficiently high shear rates result in an haemodynamic environment that is a preferred location for initial platelet aggregation.
Collapse
Affiliation(s)
- B J M van Rooij
- Computational Science, Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - G Závodszky
- Computational Science, Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - V W Azizi Tarksalooyeh
- Computational Science, Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - A G Hoekstra
- Computational Science, Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Griffin MT, Kim D, Ku DN. Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis. BIOMICROFLUIDICS 2019; 13:054106. [PMID: 31592301 PMCID: PMC6773594 DOI: 10.1063/1.5113508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Atherothrombosis leads to complications of myocardial infarction and stroke as a result of shear-induced platelet aggregation (SIPA). Clinicians and researchers may benefit from diagnostic and benchtop microfluidic assays that assess the thrombotic activity of an individual. Currently, there are several different proposed point-of-care diagnostics and microfluidic thrombosis assays with different design parameters and end points. The microfluidic geometry, surface coatings, and anticoagulation may strongly influence the precision of these assays. Variability in selected end points also persists, leading to ambiguous results. This study aims to assess the effects of three physiologically relevant extrinsic design factors on the variability of a single end point to provide a quantified rationale for design parameter and end-point standardization. Using a design of experiments approach, we show that the methods of channel fabrication and collagen surface coating significantly impact the variability of occlusion time from porcine whole blood, while anticoagulant selection between heparin and citrate did not significantly impact the variability. No factor was determined to significantly impact the mean occlusion time within the assay. Occlusive thrombus was found to consistently form in the first third (333 μm) of the high shear zone and not in the shear gradient regions. The selection of these factors in the design of point-of-care diagnostics and experimental SIPA assays may lead to increased precision and specificity in high shear thrombosis studies.
Collapse
Affiliation(s)
| | - Dongjune Kim
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - David N. Ku
- Author to whom correspondence should be addressed:
| |
Collapse
|
23
|
Korin N, Sznitman J. Preface to Special Topic: Bio-Transport Processes and Drug Delivery in Physiological Micro-Devices. BIOMICROFLUIDICS 2018; 12:042101. [PMID: 30147816 PMCID: PMC6082667 DOI: 10.1063/1.5050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
|