1
|
Wang L, Tan JM, Chen Y, Chen MF, Wong MW. Dispersion-Corrected DFT-D4 Study of the Adsorption of Halobenzenes and 1,3,5-Trihalobenzenes on the Cu(111) Surface─Effect of Sigma Hole Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37473457 DOI: 10.1021/acs.langmuir.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Halogen bonds, characterized by directionality, tunability, hydrophobicity, and variable sizes, are ideal noncovalent interactions to design and control the formation of self-assembled nanostructures. The specific self-assembly cases formed by the halogen-bonding interaction have been well studied by scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. However, there is a lack of systematic theoretical adsorption studies on halogenated molecules. In this work, the adsorption of halobenzenes and 1,3,5-trihalobenzenes on the Cu(111) surface was examined by dispersion-corrected DFT methods. The adsorption geometries, noncovalent molecule-surface interactions, electronic densities, and electrostatic potential maps were examined for their most stable adsorption sites using the DFT-D4 method. Our calculations revealed that the iodo compounds favor a different adsorption geometry from aryl chlorides and bromides. Down the halogen group (Cl to I), the adsorption energy increases and the distance between the halogen atom and Cu surface decreases, which indicates stronger molecule-surface interactions. This is supported by the changes in the density of states upon adsorption. Noncovalent interaction analysis was also employed to further understand the nature and relative strength of the molecule-surface interactions. Electrostatic potential maps revealed that the positive character of the halogen sigma hole becomes stronger upon adsorption. Thus, surface adsorption of the halogenated molecule will enhance the formation of intermolecular halogen bonds. The present theoretical findings are expected to contribute toward a more comprehensive understanding of halogen bonding on the Cu(111) surface.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jun Min Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yingqian Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Meng-Fu Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Shiba S, Yoshimoto S, Hashiguchi S, Kunitake M, Kato D, Niwa O, Matsuguchi M. Porous gold nanomesh films electrodeposited in toluene-based dynamic soft template. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Beneficial effect of Au and Pt doping of the Ag-(100) surface for thiophene and pyridine adsorption from density functional theory calculations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Dombrowski PM, Kachel SR, Neuhaus L, Gottfried JM, Witte G. Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion. NANOSCALE 2021; 13:13816-13826. [PMID: 34477656 DOI: 10.1039/d1nr03532k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role.
Collapse
|
5
|
Dickbreder T, Bechstein R, Kühnle A. Crucial impact of exchange between layers on temperature programmed desorption. Phys Chem Chem Phys 2021; 23:18314-18321. [PMID: 34357364 DOI: 10.1039/d1cp01924d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Desorption of molecules from surfaces constitutes an elementary process that is fundamental in both natural and application-oriented fields, including dewetting, weathering and catalysis. A powerful method to investigate desorption processes is temperature-programmed desorption (TPD), which offers the potential to provide mechanistic insights into the desorption kinetics. Using TPD, the desorption order, the energy barrier as well as the entropy change upon desorption can be accessed. In the past, several analysis methods have been developed for TPD data. These methods have in common that they rely on the Polanyi-Wigner equation, which requires proposing a desorption mechanism with a single (or at least dominating) desorption path. For real systems, however, several coupled desorption paths can be easily envisioned, which cannot be disentangled. Here, we analyse the influence of exchange between the first and the second adsorbate layer on the desorption process. We present a kinetic model, in which molecules can desorb directly from the first layer or change into the second layer and desorb from there. Interestingly, considering this additional desorption pathway alters the desorption spectrum considerably, even if the transient second-layer occupation remains as small as 4 × 10-6 monolayers. We show that the impact of this layer exchange can be described by a modified Polanyi-Wigner equation. Our study demonstrates that layer exchange can crucially impact the TPD data.
Collapse
Affiliation(s)
- Tobias Dickbreder
- Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | | | | |
Collapse
|
6
|
Adhikari S, Nepal NK, Tang H, Ruzsinszky A. Describing adsorption of benzene, thiophene, and xenon on coinage metals by using the Zaremba-Kohn theory-based model. J Chem Phys 2021; 154:124705. [PMID: 33810670 DOI: 10.1063/5.0042719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Semilocal (SL) density functional approximations (DFAs) are widely applied but have limitations due to their inability to incorporate long-range van der Waals (vdW) interaction. Non-local functionals (vdW-DF, VV10, and rVV10) or empirical methods (DFT+D, DFT+vdW, and DFT+MBD) are used with SL-DFAs to account for such missing interaction. The physisorption of a molecule on the surface of the coinage metals (Cu, Ag, and Au) is a typical example of systems where vdW interaction is significant. However, it is difficult to find a general method that reasonably describes both adsorption energy and geometry of even the simple prototypes of cyclic and heterocyclic aromatic molecules such as benzene (C6H6) and thiophene (C4H4S), respectively, with reasonable accuracy. In this work, we present an alternative scheme based on Zaremba-Kohn theory, called DFT+vdW-dZK. We show that unlike other popular methods, DFT+vdW-dZK and particularly SCAN+vdW-dZK give an accurate description of the physisorption of a rare-gas atom (xenon) and two small albeit diverse prototype organic molecules on the (111) surfaces of the coinage metals.
Collapse
Affiliation(s)
- Santosh Adhikari
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Niraj K Nepal
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Hong Tang
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
7
|
Grimme S, Hansen A, Ehlert S, Mewes JM. r 2SCAN-3c: A "Swiss army knife" composite electronic-structure method. J Chem Phys 2021; 154:064103. [PMID: 33588555 DOI: 10.1063/5.0040021] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recently proposed r2SCAN meta-generalized-gradient approximation (mGGA) of Furness and co-workers is used to construct an efficient composite electronic-structure method termed r2SCAN-3c. To this end, the unaltered r2SCAN functional is combined with a tailor-made triple-ζ Gaussian atomic orbital basis set as well as with refitted D4 and geometrical counter-poise corrections for London-dispersion and basis set superposition error. The performance of the new method is evaluated for the GMTKN55 database covering large parts of chemical space with about 1500 data points, as well as additional benchmarks for non-covalent interactions, organometallic reactions, and lattice energies of organic molecules and ices, as well as for the adsorption on polar salt and non-polar coinage-metal surfaces. These comprehensive tests reveal a spectacular performance and robustness of r2SCAN-3c: It by far surpasses its predecessor B97-3c at only twice the cost and provides one of the best results of all semi-local density-functional theory (DFT)/QZ methods ever tested for the GMTKN55 database at one-tenth of the cost. Specifically, for reaction and conformational energies as well as non-covalent interactions, it outperforms prominent hybrid-DFT/QZ approaches at two to three orders of magnitude lower cost. Perhaps, the most relevant remaining issue of r2SCAN-3c is self-interaction error (SIE), owing to its mGGA nature. However, SIE is slightly reduced compared to other (m)GGAs, as is demonstrated in two examples. After all, this remarkably efficient and robust method is chosen as our new group default, replacing previous composite DFT and partially even expensive high-level methods in most standard applications for systems with up to several hundreds of atoms.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
8
|
Kachel SR, Dombrowski PM, Breuer T, Gottfried JM, Witte G. Engineering of TMDC-OSC hybrid interfaces: the thermodynamics of unitary and mixed acene monolayers on MoS 2. Chem Sci 2020; 12:2575-2585. [PMID: 34164025 PMCID: PMC8179302 DOI: 10.1039/d0sc05633b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Hybrid systems of two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) and organic semiconductors (OSCs) have become subject of great interest for future device architectures. Although OSC-TMDC hybrid systems have been used in first device demonstrations, the precise preparation of ultra-thin OSC films on TMDCs has not been addressed. Due to the weak van der Waals interaction between TMDCs and OSCs, this requires precise knowledge of the thermodynamics at hand. Here, we use temperature-programmed desorption (TPD) and Monte Carlo (MC) simulations of TPD traces to characterize the desorption kinetics of pentacene (PEN) and perfluoropentacene (PFP) on MoS2 as a model system for OSCs on TMDCs. We show that the monolayers of PEN and PFP are thermally stabilized compared to their multilayers, which allows preparation of nominal monolayers by selective desorption of multilayers. This stabilization is, however, caused by entropy due to a high molecular mobility rather than an enhanced molecule-substrate bond. Consequently, the nominal monolayers are not densely packed films. Molecular mobility can be suppressed in mixed monolayers of PEN and PFP that, due to intermolecular attraction, form highly ordered films as shown by scanning tunneling microscopy. Although this reduces the entropic stabilization, the intermolecular attraction further stabilizes mixed films.
Collapse
Affiliation(s)
- Stefan R Kachel
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | | | - Tobias Breuer
- Fachbereich Physik, Philipps-Universität Marburg Renthof 7 35032 Marburg Germany
| | - J Michael Gottfried
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - Gregor Witte
- Fachbereich Physik, Philipps-Universität Marburg Renthof 7 35032 Marburg Germany
| |
Collapse
|
9
|
Martins GF, de P. Cardoso B, Galamba N, Cabral BJC. Exploring a near-Hartree–Fock–Kohn–Sham approach to study electronic properties of azobenzene in interaction with gold: From clusters to the Au(111) surface. J Chem Phys 2020; 153:214701. [DOI: 10.1063/5.0030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gabriel F. Martins
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Bernardo de P. Cardoso
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno Galamba
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Benedito J. C. Cabral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Chakraborty D, Berland K, Thonhauser T. Next-Generation Nonlocal van der Waals Density Functional. J Chem Theory Comput 2020; 16:5893-5911. [PMID: 32786912 DOI: 10.1021/acs.jctc.0c00471] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fundamental ideas for a nonlocal density functional theory-capable of reliably capturing van der Waals interactions-were already conceived in the 1990s. In 2004, a seminal paper introduced the first practical nonlocal exchange-correlation functional called vdW-DF, which has become widely successful and laid the foundation for much further research. However, since then, the functional form of vdW-DF has remained unchanged. Several successful modifications paired the original functional with different (local) exchange functionals to improve performance, and the successor vdW-DF2 also updated one internal parameter. Bringing together different insights from almost 2 decades of development and testing, we present the next-generation nonlocal correlation functional called vdW-DF3, in which we change the functional form while staying true to the original design philosophy. Although many popular functionals show good performance around the binding separation of van der Waals complexes, they often result in significant errors at larger separations. With vdW-DF3, we address this problem by taking advantage of a recently uncovered and largely unconstrained degree of freedom within the vdW-DF framework that can be constrained through empirical input, making our functional semiempirical. For two different parameterizations, we benchmark vdW-DF3 against a large set of well-studied test cases and compare our results with the most popular functionals, finding good performance in general for a wide array of systems and a significant improvement in accuracy at larger separations. Finally, we discuss the achievable performance within the current vdW-DF framework, the flexibility in functional design offered by vdW-DF3, as well as possible future directions for nonlocal van der Waals density functional theory.
Collapse
Affiliation(s)
- D Chakraborty
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - K Berland
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - T Thonhauser
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
11
|
Franco-Cañellas A, Duhm S, Gerlach A, Schreiber F. Binding and electronic level alignment of π-conjugated systems on metals. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:066501. [PMID: 32101802 DOI: 10.1088/1361-6633/ab7a42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.
Collapse
Affiliation(s)
- Antoni Franco-Cañellas
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
12
|
Lexow M, Massicot S, Maier F, Steinrück HP. Stability and Exchange Processes in Ionic Liquid/Porphyrin Composite Films on Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:29708-29721. [PMID: 31867088 PMCID: PMC6913898 DOI: 10.1021/acs.jpcc.9b08531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In light of increasing interest in the development of organic-organic multicomponent heterostructures on metals, this molecular-scale study investigates prototypical composite systems of ultrathin porphyrin and ionic liquid (IL) films on metallic supports under well-defined ultrahigh vacuum conditions. By means of angle-resolved X-ray photoelectron spectroscopy, we investigated the adsorption, stability, and thermal exchange of the resulting films after sequential physical vapor deposition of the free-base porphyrin 5,10,15,20-tetraphenylporphyrin, 2H-TPP, and the IL 1-methyl-3-octylimidazolium hexafluorophosphate, [C8C1Im][PF6], on Ag(111) and Au(111). 2H-TPP shows two-dimensional growth of up to two closed molecular layers on Ag(111) and Au(111) and three-dimensional island growth for thicker films. IL films on top of a monolayer of 2H-TPP exhibit Stranski-Krastanov-like growth and are stable up to 385 K. The 2H-TPP layer leads to destabilization of the IL films, compared to the IL in direct contact with the bare metals, by inhibiting the specific adsorption of the ions on the metal surfaces. When the porphyrin is deposited on top of [C8C1Im][PF6] at low temperature, the 2H-TPP molecules adsorb on top of the IL film at first but replace the IL at the IL/metal interfaces upon heating above 240 K. This exchange process is most likely driven by the higher adsorption energy of 2H-TPP on Ag(111) and Au(111) surfaces, as compared to the IL. The behavior observed on Ag(111) and Au(111) is identical. The results are highly relevant for the stability of porphyrin/IL-based thin film catalyst systems and molecular devices, and more generally, stacked organic multilayer architectures.
Collapse
|
13
|
Maass F, Ajdari M, Kabeer FC, Vogtland M, Tkatchenko A, Tegeder P. Nonadditivity of the Adsorption Energies of Linear Acenes on Au(111): Molecular Anisotropy and Many-Body Effects. J Phys Chem Lett 2019; 10:1000-1004. [PMID: 30768273 DOI: 10.1021/acs.jpclett.9b00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adsorption energies of chemisorbed molecules on inorganic solids usually scale linearly with molecular size and are well described by additive scaling laws. However, much less is known about scaling laws for physisorbed molecules. Our temperature-programmed desorption experiments demonstrate that the adsorption energy of acenes (benzene to pentacene) on the Au(111) surface in the limit of low coverage is highly nonadditive with respect to the molecular size. For pentacene, the deviation from an additive scaling of the adsorption energy amounts to as much as 0.7 eV. Our first-principles calculations explain the observed nonadditive behavior in terms of anisotropy of molecular polarization stemming from many-body electronic correlations. The observed nonadditivity of the adsorption energy has implications for surface-mediated intermolecular interactions and the ensuing on-surface self-assembly. Thus, future coverage-dependent studies should aim to gain insights into the impact of these complex interactions on the self-assembly of π-conjugated organic molecules on metal surfaces.
Collapse
Affiliation(s)
- Friedrich Maass
- Ruprecht-Karls-Universität Heidelberg , Physikalisch-Chemisches Institut , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Mohsen Ajdari
- Ruprecht-Karls-Universität Heidelberg , Physikalisch-Chemisches Institut , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | | | - Maximilian Vogtland
- Ruprecht-Karls-Universität Heidelberg , Physikalisch-Chemisches Institut , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit , University of Luxembourg , L-1511 Luxembourg , Luxembourg
| | - Petra Tegeder
- Ruprecht-Karls-Universität Heidelberg , Physikalisch-Chemisches Institut , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| |
Collapse
|
14
|
Al-Hamdani YS, Tkatchenko A. Understanding non-covalent interactions in larger molecular complexes from first principles. J Chem Phys 2019; 150:010901. [PMID: 30621423 PMCID: PMC6910608 DOI: 10.1063/1.5075487] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
Non-covalent interactions pervade all matter and play a fundamental role in layered materials, biological systems, and large molecular complexes. Despite this, our accumulated understanding of non-covalent interactions to date has been mainly developed in the tens-of-atoms molecular regime. This falls considerably short of the scales at which we would like to understand energy trends, structural properties, and temperature dependencies in materials where non-covalent interactions have an appreciable role. However, as more reference information is obtained beyond moderately sized molecular systems, our understanding is improving and we stand to gain pertinent insights by tackling more complex systems, such as supramolecular complexes, molecular crystals, and other soft materials. In addition, accurate reference information is needed to provide the drive for extending the predictive power of more efficient workhorse methods, such as density functional approximations that also approximate van der Waals dispersion interactions. In this perspective, we discuss the first-principles approaches that have been used to obtain reference interaction energies for beyond modestly sized molecular complexes. The methods include quantum Monte Carlo, symmetry-adapted perturbation theory, non-canonical coupled cluster theory, and approaches based on the random-phase approximation. By considering the approximations that underpin each method, the most accurate theoretical references for supramolecular complexes and molecular crystals to date are ascertained. With these, we also assess a handful of widely used exchange-correlation functionals in density functional theory. The discussion culminates in a framework for putting into perspective the accuracy of high-level wavefunction-based methods and identifying future challenges.
Collapse
Affiliation(s)
- Yasmine S Al-Hamdani
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|