1
|
Tsukada H, Wako M, Ueda S, Nagamine K. Touchpad-based immunochromatographic strip for detecting the skin surface proteins. Anal Biochem 2024; 692:115575. [PMID: 38796117 DOI: 10.1016/j.ab.2024.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
This study demonstrates, for the first time, the proof-of-concept of a novel immunosensor, a touchpad-based immunochromatographic strip, that non-invasively extracts and detects skin surface proteins. The strip was composed of a nitrocellulose membrane at the center, where a spot of anti-human IgG capture antibody was physically adsorbed. The capture antibody spot was covered with a glass fiber membrane impregnated with phosphate-buffered saline (PBS) to extract skin surface proteins, avoiding direct contact of the human skin with the capture antibodies. Skin surface IgG was detected in two steps: (1) touching the capture antibody via a glass fiber membrane containing PBS, and (2) dipping the strip into the Au-nanoparticle-labeled secondary antibody to visualize the existence of the captured skin surface IgG on the strip. We qualitatively demonstrated that using a very small amount of PBS while maintaining contact with the skin, skin surface proteins can be concentrated and detected, even with a relatively low-sensitivity immunochromatographic chip. This sensor is expected to be a potential biosensor for the non-invasive diagnosis of the integrity of human skin.
Collapse
Affiliation(s)
- Hyugo Tsukada
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan
| | - Mai Wako
- Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan
| | - Syunsuke Ueda
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan; Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan.
| |
Collapse
|
2
|
Park C, Jeong Y, Yeom H, Song SW, Park W, Lee D. Time-traceable micro-taggants for anti-counterfeiting and secure distribution of food and medicines. BIOMICROFLUIDICS 2024; 18:024109. [PMID: 38634038 PMCID: PMC11021126 DOI: 10.1063/5.0200915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024]
Abstract
This study presents an innovative solution for the enhanced tracking and security of pharmaceuticals through the development of microstructures incorporating environmentally responsive, coded microparticles. Utilizing maskless photolithography, we engineered these microparticles with a degradable masking layer with 30 μm thickness that undergoes controlled dissolution. Quantitative analysis revealed that the protective layer's degradation, monitored by red fluorescence intensity, diminishes predictably over 144 h in phosphate-buffered saline under physiological conditions. This degradation not only confirms the microparticles' integrity but also allows the extraction of encoded information, which can serve as a robust indicator of medicinal shelf life and a deterrent to tampering. These findings indicate the potential for applying this technology in real-time monitoring of pharmaceuticals, ensuring quality and authenticity in the supply chain.
Collapse
Affiliation(s)
- Cheolheon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunjin Jeong
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Huiran Yeom
- Division of Data Science, The University of Suwon, Hwaseong 18323, Republic of Korea
| | | | | | - Daewon Lee
- Department of Electronics Engineering, Myongji University, Yongin 17058, Republic of Korea
| |
Collapse
|
3
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Orro K, Salk K, Abram K, Arshavskaja J, Meikas A, Karelson M, Neuman T, Kingo K, Spee P. Assessment of soluble skin surface protein levels for monitoring psoriasis vulgaris in adult psoriasis patients using non-invasive transdermal analysis patch: A pilot study. Front Med (Lausanne) 2023; 10:1072160. [PMID: 36936209 PMCID: PMC10019527 DOI: 10.3389/fmed.2023.1072160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
To improve the care of patients with chronic inflammatory skin conditions, such as psoriasis, there is a need for diagnostic methods that can facilitate personalized medicine. This exploratory pilot study aimed to determine whether non-invasive measurements of inflammation-related proteins from psoriatic skin can be sampled using the FibroTx Transdermal Analysis Patch (TAP) to assess disease severity and monitor pharmacodynamic changes. Ten healthy volunteers and 44 psoriasis vulgaris patients were enrolled in the exploratory pilot study. Skin surface protein measurements for healthy and lesional skin were performed using TAP. Patients' scores of psoriasis activity and severity (PASI) were documented, and differences in the thickness of skin layers were determined using sonography. The study assessed the skin surface protein levels of psoriasis patients undergoing whole-body treatment with narrow-band UVB to evaluate whether the levels of the skin surface proteins IL-1α, IL-1RA CXCL-1/2, and hBD-1 were associated with the disease activity and severity measurements. Using TAP technology, it was observed that there were clear differences in levels of IL-1α, IL-1RA, CXCL-1/2, and hBD-1 between psoriasis lesional and non-lesional skin. In addition, a positive correlation between CXCL-1/2 and desquamation, and between CXCL-1/2 and SLEB thickness was observed. During UVB treatment, the TAP measurements revealed a clear reduction of IL-1RA, CXCL 1/2, and hBD-1 on lesional skin. Further, skin surface measurements of IL-1RA and CXCL-1/2 displayed a different profile than those achieved by visual scoring of local inflammation, thus indicating that measuring the 'molecular root' of inflammation appears to have value as an objective, non-invasive biomarker measurement for scoring disease severity.
Collapse
Affiliation(s)
- Kadri Orro
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- FibroTx LLC, Tallinn, Estonia
- *Correspondence: Kadri Orro,
| | | | - Kristi Abram
- Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
- Clinic of Dermatology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | | | | | - Maire Karelson
- Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
- Clinic of Dermatology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | | | - Külli Kingo
- Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
- Clinic of Dermatology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Pieter Spee
- FibroTx LLC, Tallinn, Estonia
- PS! Pharmaconsult, Alleroed, Denmark
| |
Collapse
|
5
|
Bae S, Lee D, Na H, Jang J, Kwon S. One-step assembly of barcoded planar microparticles for efficient readout of multiplexed immunoassay. LAB ON A CHIP 2022; 22:2090-2096. [PMID: 35579061 DOI: 10.1039/d2lc00174h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Barcoded planar microparticles are suitable for developing cost-efficient multiplexed assays, but the robustness and efficiency of the readout process still needs improvement. Here, we designed a one-step microparticle assembling chip that produces efficient and accurate multiplex immunoassay readout results. Our design was also compatible with injection molding for mass production.
Collapse
Affiliation(s)
- Sangwook Bae
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, South Korea.
| | - Daewon Lee
- Education and Research Program for Future ICT Pioneers, Seoul National University, Seoul 08826, South Korea
- SOFT Foundry Institute, Seoul National University, Seoul 08826, South Korea
| | - Hunjong Na
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
- QuantaMatrix Inc., Medical Innovation Center, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Jisung Jang
- QuantaMatrix Inc., Medical Innovation Center, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Sunghoon Kwon
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, South Korea.
- Education and Research Program for Future ICT Pioneers, Seoul National University, Seoul 08826, South Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
- QuantaMatrix Inc., Medical Innovation Center, Seoul National University Hospital, Seoul, 03080, South Korea
| |
Collapse
|
6
|
Bae SW, Kim J, Kwon S. Recent Advances in Polymer Additive Engineering for Diagnostic and Therapeutic Hydrogels. Int J Mol Sci 2022; 23:2955. [PMID: 35328375 PMCID: PMC8955662 DOI: 10.3390/ijms23062955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are hydrophilic polymer materials that provide a wide range of physicochemical properties as well as are highly biocompatible. Biomedical researchers are adapting these materials for the ever-increasing range of design options and potential applications in diagnostics and therapeutics. Along with innovative hydrogel polymer backbone developments, designing polymer additives for these backbones has been a major contributor to the field, especially for expanding the functionality spectrum of hydrogels. For the past decade, researchers invented numerous hydrogel functionalities that emerge from the rational incorporation of additives such as nucleic acids, proteins, cells, and inorganic nanomaterials. Cases of successful commercialization of such functional hydrogels are being reported, thus driving more translational research with hydrogels. Among the many hydrogels, here we reviewed recently reported functional hydrogels incorporated with polymer additives. We focused on those that have potential in translational medicine applications which range from diagnostic sensors as well as assay and drug screening to therapeutic actuators as well as drug delivery and implant. We discussed the growing trend of facile point-of-care diagnostics and integrated smart platforms. Additionally, special emphasis was given to emerging bioinformatics functionalities stemming from the information technology field, such as DNA data storage and anti-counterfeiting strategies. We anticipate that these translational purpose-driven polymer additive research studies will continue to advance the field of functional hydrogel engineering.
Collapse
Affiliation(s)
- Sang-Wook Bae
- Bio-MAX/N-Bio, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 08826, Korea
| | - Jiyun Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
- Center for Multidimensional Programmable Matter, Ulsan 44919, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
7
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
8
|
Lohcharoenkal W, Abbas Z, Rojanasakul Y. Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines. BIOSENSORS 2021; 11:364. [PMID: 34677320 PMCID: PMC8533878 DOI: 10.3390/bios11100364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.
Collapse
Affiliation(s)
| | - Zareen Abbas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
9
|
Jeong Y, Jang H, Kang J, Nam J, Shin K, Kwon S, Choi J. Color-Coded Droplets and Microscopic Image Analysis for Multiplexed Antibiotic Susceptibility Testing. BIOSENSORS-BASEL 2021; 11:bios11080283. [PMID: 34436085 PMCID: PMC8393621 DOI: 10.3390/bios11080283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Since the discovery of antibiotics, the emergence of antibiotic resistance has become a global issue that is threatening society. In the era of antibiotic resistance, finding the proper antibiotics through antibiotic susceptibility testing (AST) is crucial in clinical settings. However, the current clinical process of AST based on the broth microdilution test has limitations on scalability to expand the number of antibiotics that are tested with various concentrations. Here, we used color-coded droplets to expand the multiplexing of AST regarding the kind and concentration of antibiotics. Color type and density differentiate the kind of antibiotics and concentration, respectively. Microscopic images of a large view field contain numbers of droplets with different testing conditions. Image processing analysis detects each droplet, decodes color codes, and measures the bacterial growth in the droplet. Testing E. coli ATCC 25922 with ampicillin, gentamicin, and tetracycline shows that the system can provide a robust and scalable platform for multiplexed AST. Furthermore, the system can be applied to various drug testing systems, which require several different testing conditions.
Collapse
Affiliation(s)
- Yunjin Jeong
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea;
| | - Haewook Jang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea; (H.J.); (J.K.)
| | - Junwon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea; (H.J.); (J.K.)
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Korea
| | - Juhong Nam
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (J.N.); (K.S.)
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (J.N.); (K.S.)
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea;
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea; (H.J.); (J.K.)
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (J.N.); (K.S.)
- Institute of Entrepreneurial Bio Convergence, Seoul National University, Seoul 08826, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Center for Medical Institute, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (S.K.); (J.C.)
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
10
|
Schaap MJ, Bruins FM, He X, Orro K, Peppelman M, van Erp PEJ, de Jong EMGJ, Koenen HJPM, van den Bogaard EH, Seyger MMB. Skin Surface Protein Detection by Transdermal Analysis Patches in Pediatric Psoriasis. Skin Pharmacol Physiol 2021; 34:271-280. [PMID: 34015784 DOI: 10.1159/000516110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Transdermal analysis patches (TAPs) noninvasively measure soluble proteins in the stratum corneum. Ultimately, such local protein profiles could benefit the search for biomarkers to improve personalized treatment in psoriasis. This study aimed to explore the patient friendliness and protein detection by TAP in pediatric psoriasis in daily clinical practice. METHODS In this observational study, TAPs measuring CXC chemokine ligand (CXCL)-1/2, CC chemokine ligand (CCL)-27, interleukin (IL)-1RA, IL-23, IL-1α, IL-8, IL-4, IL-22, IL-17A, vascular endothelial growth factor (VEGF), human beta-defensin (hBD)-2, hBD-1, and kallikrein-related peptidase (KLK)-5 were applied on lesional, peri-lesional, and non-lesional skin sites of psoriasis patients aged >5 to <18 years. Discomfort during TAP removal as an indicator for patient friendliness was assessed by visual analogue scale (VAS; range 0-10). RESULTS Thirty-two patients (median age 14.0 years) were included, of which 19 were treated with solely topical agents and 13 with systemic treatment. The median VAS of discomfort during TAP removal was 1.0 (interquartile range 1.0). Significantly higher levels in lesional versus non-lesional skin were found for IL-1RA, VEGF, CXCL-1/2, hBD-2, and IL-8, whereas lower levels were found for IL-1α. Skin surface proteins were measured in both treatment groups, with significant higher lesional levels of KLK-5, IL-1RA, hBD-2, IL-1α, IL-23, and CCL-27 in the systemic treatment group. CONCLUSION The TAP platform holds the potential for patient-friendly and noninvasive monitoring of skin-derived proteins in pediatric psoriasis patients in daily clinical practice.
Collapse
Affiliation(s)
- Mirjam J Schaap
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Finola M Bruins
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xuehui He
- Department of Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kadri Orro
- FibroTx LLC, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Malou Peppelman
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piet E J van Erp
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elke M G J de Jong
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marieke M B Seyger
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Kim SD, Song SW, Oh DY, Lee AC, Koo JW, Kang T, Kim MC, Lee C, Jeong Y, Jeong HY, Lee D, Cho S, Kwon S, Kim J. Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays. MICROMACHINES 2020; 11:mi11020175. [PMID: 32046141 PMCID: PMC7074623 DOI: 10.3390/mi11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy.
Collapse
Affiliation(s)
- Su Deok Kim
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seo Woo Song
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
| | - Dong Yoon Oh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea;
| | - Amos Chungwon Lee
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea;
| | - Jeong Woo Koo
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Taehun Kang
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea;
| | - Min Chang Kim
- School of Environmental Engineering, University of Seoul, Seoul 08826, Korea
| | - Changhee Lee
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea;
| | - Yunjin Jeong
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
| | - Hyun Yong Jeong
- BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (D.L.)
| | - Daewon Lee
- BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (D.L.)
| | - Seongkyu Cho
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea;
| | - Sunghoon Kwon
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea; (S.D.K.); (S.W.S.); (A.C.L.); (C.L.); (Y.J.); (S.C.)
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea;
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea;
- Correspondence: (S.K.); (J.K.); Tel.: +82-2-880-1736 (S.K.); +82-52-217-3052 (J.K.)
| | - Jiyun Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
- Correspondence: (S.K.); (J.K.); Tel.: +82-2-880-1736 (S.K.); +82-52-217-3052 (J.K.)
| |
Collapse
|
12
|
Lee AC, Lee Y, Lee D, Kwon S. Divide and conquer: A perspective on biochips for single-cell and rare-molecule analysis by next-generation sequencing. APL Bioeng 2019; 3:020901. [PMID: 31431936 PMCID: PMC6697027 DOI: 10.1063/1.5095962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in biochip technologies that connect next-generation sequencing (NGS) to real-world problems have facilitated breakthroughs in science and medicine. Because biochip technologies are themselves used in sequencing technologies, the main strengths of biochips lie in their scalability and throughput. Through the advantages of biochips, NGS has facilitated groundbreaking scientific discoveries and technical breakthroughs in medicine. However, all current NGS platforms require nucleic acids to be prepared in a certain range of concentrations, making it difficult to analyze biological systems of interest. In particular, many of the most interesting questions in biology and medicine, including single-cell and rare-molecule analysis, require strategic preparation of biological samples in order to be answered. Answering these questions is important because each cell is different and exists in a complex biological system. Therefore, biochip platforms for single-cell or rare-molecule analyses by NGS, which allow convenient preparation of nucleic acids from biological systems, have been developed. Utilizing the advantages of miniaturizing reaction volumes of biological samples, biochip technologies have been applied to diverse fields, from single-cell analysis to liquid biopsy. From this perspective, here, we first review current state-of-the-art biochip technologies, divided into two broad categories: microfluidic- and micromanipulation-based methods. Then, we provide insights into how future biochip systems will aid some of the most important biological and medical applications that require NGS. Based on current and future biochip technologies, we envision that NGS will come ever closer to solving more real-world scientific and medical problems.
Collapse
Affiliation(s)
- A C Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, South Korea
| | - Y Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | | | | |
Collapse
|