1
|
Lee JH, Chiu JHC, Ginga NJ, Ahmed T, Thouless MD, Liu Y, Takayama S. Super-resolution imaging of linearized chromatin in tunable nanochannels. NANOSCALE HORIZONS 2023; 8:1043-1053. [PMID: 37221952 DOI: 10.1039/d3nh00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanofluidic linearization and optical mapping of naked DNA have been reported in the research literature, and implemented in commercial instruments. However, the resolution with which DNA features can be resolved is still inherently limited by both Brownian motion and diffraction-limited optics. Direct analysis of native chromatin is further hampered by difficulty in electrophoretic manipulation, which is routinely used for DNA analysis. This paper describes the development of a three-layer, tunable, nanochannel system that enables non-electrophoretic linearization and immobilization of native chromatin. Furthermore, through careful selection of self-blinking fluorescent dyes and the design of the nanochannel system, we achieve direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging of the linearized chromatin. As an initial demonstration, rDNA chromatin extracted from Tetrahymena is analyzed by multi-color imaging of total DNA, newly synthesized DNA, and newly synthesized histone H3. Our analysis reveals a relatively even distribution of newly synthesized H3 across two halves of the rDNA chromatin with palindromic symmetry, supporting dispersive nucleosome segregation. As a proof-of-concept study, our work achieves super-resolution imaging of native chromatin fibers linearized and immobilized in tunable nanochannels. It opens up a new avenue for collecting long-range and high-resolution epigenetic information as well as genetic information.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joyce Han-Ching Chiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nicholas J Ginga
- Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Tasdiq Ahmed
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M D Thouless
- Department of Mechanical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifan Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Chen J, Sun L, Wang S, Tian F, Zhu H, Zhang R, Dai L. Crowding-induced polymer trapping in a channel. Phys Rev E 2021; 104:054502. [PMID: 34942690 DOI: 10.1103/physreve.104.054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 11/07/2022]
Abstract
In this work, we report an intriguing phenomenon: crowding-induced polymer trapping in a channel. Using Langevin dynamics simulations and analytical calculations, we find that for a polymer confined in a channel, crowding particles can push a polymer into the channel corner through inducing an effective polymer-corner attraction due to the depletion effect. This phenomenon is referred to as polymer trapping. The occurrence of polymer trapping requires a minimum volume fraction of crowders, ϕ^{*}, which scales as ϕ^{*}∼(a_{c}/L_{p})^{1/3} for a_{c}≫a_{m} and ϕ^{*}∼(a_{c}/L_{p})^{1/3}(a_{c}/a_{m})^{1/2} for a_{c}≪a_{m}, where a_{c} is the crowder diameter, a_{m} is the monomer diameter, and L_{p} is the polymer persistence length. For DNA, ϕ^{*} is estimated to be around 0.25 for crowders with a_{c}=2nm. We find that ϕ^{*} also strongly depends on the shape of the channel cross section, and ϕ^{*} is much smaller for a triangle channel than a square channel. The polymer trapping leads to a nearly fully stretched polymer conformation along a channel corner, which may have practical applications, such as full stretching of DNA for the nanochannel-based genome mapping technology.
Collapse
Affiliation(s)
- Jialu Chen
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Liang Sun
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Simin Wang
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Fujia Tian
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Haoqi Zhu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Bucci G, Gadelrab K, Spakowitz AJ. Free Energy and Dynamics of Annihilation of Topological Defects in Nanoconfined DNA. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanna Bucci
- Robert Bosch LLC, 384 Santa Trinita Ave, Sunnyvale, California 94085, United States
| | - Karim Gadelrab
- Robert Bosch LLC, 1 Kendall Square, Suite 7-101, Cambridge, Massachusetts 02139, United States
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Ma Z, Dorfman KD. Interactions between two knots in nanochannel-confined DNA molecules. J Chem Phys 2021; 155:154901. [PMID: 34686050 DOI: 10.1063/5.0067076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental data on the interaction between two knots in deoxyribonucleic acid (DNA) confined in nanochannels produced two particular behaviors of knot pairs along the DNA molecules: (i) widely separated knots experience an attractive interaction but only remain in close proximity for several seconds and (ii) knots tend to remain separated until one of the knots unravels at the chain end. The associated free energy profile of the knot-knot separation distance for an ensemble of DNA knots exhibits a global minimum when knots are separated, indicating that the separated knot state is more stable than the intertwined knot state, with dynamics in the separated knot state that are consistent with independent diffusion. The experimental observations of knot-knot interactions under nanochannel confinement are inconsistent with previous simulation-based and experimental results for stretched polymers under tension wherein the knots attract and then stay close to each other. This inconsistency is postulated to result from a weaker fluctuation-induced attractive force between knots under confinement when compared to the knots under tension, the latter of which experience larger fluctuations in transverse directions.
Collapse
Affiliation(s)
- Zixue Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Morrin GT, Kienle DF, Schwartz DK. Diffusion of Short Semiflexible DNA Polymer Chains in Strong and Moderate Confinement. ACS Macro Lett 2021; 10:1191-1195. [PMID: 35549041 DOI: 10.1021/acsmacrolett.1c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many technological applications, DNA is confined within nanoenvironments that are smaller than the size of the unconfined polymer in solution. However, the dependence of the diffusion coefficient on molecular weight and characteristic confinement dimension remains poorly understood in this regime. Here, convex lens-induced confinement (CLiC) was leveraged to examine how the diffusion of short DNA fragments varied as a function of slit height by using single-molecule fluorescence tracking microscopy. The diffusion coefficient followed approximate power law behavior versus confinement height, with exponents of 0.27 ± 0.01, 0.32 ± 0.02, and 0.42 ± 0.06 for 692, 1343, and 2686 base pair chains, respectively. The weak dependence on slit height suggests that shorter semiflexible chains may adopt increasingly rodlike conformations and therefore experience weaker excluded-volume interactions as the confinement dimension is reduced. The diffusion coefficient versus molecular weight also exhibited apparent power law behavior, with exponents that varied slightly (from -0.89 to -0.85) with slit height, consistent with hydrodynamic interactions intermediate between Rouse and Zimm model predictions.
Collapse
Affiliation(s)
- Gregory T Morrin
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Ma Z, Dorfman KD. Diffusion of Knotted DNA Molecules in Nanochannels in the Extended de Gennes Regime. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zixue Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Affiliation(s)
- Zixue Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Schotzinger RM, Menard LD, Ramsey JM. Single-Molecule DNA Extension in Rectangular and Square Profile Nanochannels in the Extended de Gennes Regime. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- R. Michael Schotzinger
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - J. Michael Ramsey
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Bhandari AB, Dorfman KD. Limitations of the equivalent neutral polymer assumption for theories describing nanochannel-confined DNA. Phys Rev E 2020; 101:012501. [PMID: 32069627 PMCID: PMC7040977 DOI: 10.1103/physreve.101.012501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/07/2022]
Abstract
The prevailing theories describing DNA confinement in a nanochannel are predicated on the assumption that wall-DNA electrostatic interactions are sufficiently short-ranged such that the problem can be mapped to an equivalent neutral polymer confined by hard walls with an appropriately reduced effective channel size. To determine when this hypothesis is valid, we leveraged a recently reported experimental data set for the fractional extension of DNA molecules in a 250-nm-wide poly(dimethyl siloxane) (PDMS) nanochannel with buffer ionic strengths between 0.075 and 48 mM. Evaluating these data in the context of the weakly correlated telegraph model of DNA confinement reveals that, at ionic strengths greater than 0.3 mM, the average fractional extension of the DNA molecules agree with theoretical predictions with a mean absolute error of 0.04. In contrast, experiments at ionic strengths below 0.3 mM produce average fractional extensions that are systematically smaller than the theoretical predictions with a larger mean absolute error of 0.15. The deviations between experiment and theory display a correlation coefficient of 0.82 with the decay length for the DNA-wall electrostatics, linking the deviations with a breakdown in approximating the DNA with an equivalent neutral polymer.
Collapse
Affiliation(s)
- Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
10
|
Chuang HM, Reifenberger JG, Bhandari AB, Dorfman KD. Extension distribution for DNA confined in a nanochannel near the Odijk regime. J Chem Phys 2019; 151:114903. [PMID: 31542006 DOI: 10.1063/1.5121305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA confinement in a nanochannel typically is understood via mapping to the confinement of an equivalent neutral polymer by hard walls. This model has proven to be effective for confinement in relatively large channels where hairpin formation is frequent. An analysis of existing experimental data for Escherichia coli DNA extension in channels smaller than the persistence length, combined with an additional dataset for λ-DNA confined in a 34 nm wide channel, reveals a breakdown in this approach as the channel size approaches the Odijk regime of strong confinement. In particular, the predicted extension distribution obtained from the asymptotic solution to the weakly correlated telegraph model for a confined wormlike chain deviates significantly from the experimental distribution obtained for DNA confinement in the 34 nm channel, and the discrepancy cannot be resolved by treating the alignment fluctuations or the effective channel size as fitting parameters. We posit that the DNA-wall electrostatic interactions, which are sensible throughout a significant fraction of the channel cross section in the Odijk regime, are the source of the disagreement between theory and experiment. Dimensional analysis of the wormlike chain propagator in channel confinement reveals the importance of a dimensionless parameter, reflecting the magnitude of the DNA-wall electrostatic interactions relative to thermal energy, which has not been considered explicitly in the prevailing theories for DNA confinement in a nanochannel.
Collapse
Affiliation(s)
- Hui-Min Chuang
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Jeffrey G Reifenberger
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
11
|
Bhandari AB, Dorfman KD. Simulations corroborate telegraph model predictions for the extension distributions of nanochannel confined DNA. BIOMICROFLUIDICS 2019; 13:044110. [PMID: 31406555 PMCID: PMC6687496 DOI: 10.1063/1.5109566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/21/2019] [Indexed: 05/15/2023]
Abstract
Hairpins in the conformation of DNA confined in nanochannels close to their persistence length cause the distribution of their fractional extensions to be heavily left skewed. A recent theory rationalizes these skewed distributions using a correlated telegraph process, which can be solved exactly in the asymptotic limit of small but frequent hairpin formation. Pruned-enriched Rosenbluth method simulations of the fractional extension distribution for a channel-confined wormlike chain confirm the predictions of the telegraph model. Remarkably, the asymptotic result of the telegraph model remains robust well outside the asymptotic limit. As a result, the approximations in the theory required to map it to the polymer model and solve it in the asymptotic limit are not the source of discrepancies between the predictions of the telegraph model and experimental distributions of the extensions of DNA during genome mapping. The agreement between theory and simulations motivates future work to determine the source of the remaining discrepancies between the predictions of the telegraph model and experimental distributions of the extensions of DNA in nanochannels used for genome mapping.
Collapse
Affiliation(s)
- Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
12
|
Bhandari AB, Reifenberger JG, Chuang HM, Cao H, Dorfman KD. Erratum: “Measuring the wall depletion length of nanoconfined DNA” [J. Chem. Phys. 149, 104901 (2018)]. J Chem Phys 2019; 150:219901. [DOI: 10.1063/1.5108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Jeffrey G. Reifenberger
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Hui-Min Chuang
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Han Cao
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
13
|
Lee S, Lee Y, Kim Y, Wang C, Park J, Jung GY, Chen Y, Chang R, Ikeda S, Sugiyama H, Jo K. Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Concentrations. Polymers (Basel) 2018; 11:E15. [PMID: 30959999 PMCID: PMC6401831 DOI: 10.3390/polym11010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Large DNA molecules have been utilized as a model system to investigate polymer physics. However, DNA visualization via intercalating dyes has generated equivocal results due to dye-induced structural deformation, particularly unwanted unwinding of the double helix. Thus, the contour length increases and the persistence length changes so unpredictably that there has been a controversy. In this paper, we used TAMRA-polypyrrole to stain single DNA molecules. Since this staining did not change the contour length of B-form DNA, we utilized TAMRA-polypyrrole stained DNA as a tool to measure the persistence length by changing the ionic strength. Then, we investigated DNA stretching in nanochannels by varying the ionic strength from 0.06 mM to 47 mM to evaluate several polymer physics theories proposed by Odijk, de Gennes and recent papers to deal with these regimes.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yelin Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yongkyun Kim
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Cong Wang
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Gun Young Jung
- School of Material Science and Engineering, GIST, Gwangju 61005, Korea.
| | - Yenglong Chen
- Institute of Physics, Academia Sinica and Department of Chemical Engineering, National Tsing-Hua University and Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea.
| | - Shuji Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| |
Collapse
|