1
|
Liu HX, Zhou ZJ, Xie L, Liu C, Cai L, Wu XP, Liu TF. Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO 2 Photoreduction. Angew Chem Int Ed Engl 2024; 63:e202411508. [PMID: 39014940 DOI: 10.1002/anie.202411508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
The conversion of CO2 to C2 through photocatalysis poses significant challenges, and one of the biggest hurdles stems from the sluggishness of the multi-electron transfer process. Herein, taking metal-organic framework (MOF, PFC-98) as a model photocatalyst, we report a new strategy to facilitate charge separation. This strategy involves matching the energy levels of the lowest unoccupied node and linker orbitals of the MOF, thereby creating the lowest unoccupied crystal orbital (LUCO) delocalized over both the node and linker. This feature enables the direct excitation of electrons from photosensitive linker to the catalytic centers, achieving a direct charge transfer (DCT) pathway. For comparison, an isoreticular MOF (PFC-6) based on analogue components but with far apart frontier energy level was synthesized. The delocalized LUCO caused the presence of an internal charge-separated (ICS) state, prolonging the excited state lifetime and further inhibiting the electron-hole recombination. The presence of ICS state prolongs the excited state lifetime and further inhibits the electron-hole recombination. Moreover, it also induced abundant electrons accumulating at the catalytic sites, enabling the multi-electron transfer process. As a result, the material featuring delocalized LUCO exhibits superior overall CO2 photocatalytic performance with high C2 production yield and selectivity.
Collapse
Affiliation(s)
- Hai-Xiong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, 350108, P.R. China
| | - Zi-Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lei Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, 350108, P.R. China
| | - Chen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, 350108, P.R. China
| | - Lei Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, 350108, P.R. China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, 350108, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
2
|
Shahabinejad H, Binazadeh M, Esmaeilzadeh F, Hashemi F, Mousavi SM. Optimization of cerium-based metal-organic framework synthesis for maximal sonophotocatalytic tetracycline degradation. Sci Rep 2024; 14:16887. [PMID: 39043803 PMCID: PMC11266555 DOI: 10.1038/s41598-024-67676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Wastewater treatment is inevitably required to alleviate the pollution of water resources by various contaminants such as antibiotics. MOFs are novel materials with photocatalytic activities. In this study, sonophotocatalytic degradation of tetracycline (TC) by the Cerium-based MOF (Ce-MOF) is optimized by modification of its synthesis route. Ce-MOF synthesis by room temperature (RT), hydrothermal (HT), and sonochemical synthesis (SC) are studied. TC degradation experiments revealed the superiority of SC synthesis. The interplay of main synthesis parameters, namely, initial ligand concentration, ultrasound (US) power and time on sonophotocatalytic activity of Ce-MOF, were investigated by response surface methodology model (RSM) utilizing the central composite experimental design (CCD). The optimum SC synthesis conditions are an initial ligand concentration of 8.4 mmol/L, a sonication power of 50 amplitude, and a US time of 60 min. The optimally synthesized Ce-MOF was characterized by infrared spectroscopy, FTIR, XRD, FE-SEM, TEM, zeta potential analysis, diffuse reflectance spectroscopy, particle size analysis, Mott-Schottky analysis, photocurrent analysis, electrochemical impedance spectra, and photoluminescence spectroscopy. The findings indicate that the removal efficiency of TC can reach up to 81.75% within 120 min in an aqueous solution containing an initial TC concentration of 120 ppm and 1 g/L Ce-MOF at pH of 7. Mineralization efficiency of the process is 71% according to COD measurements. The Ce-MOF catalyst retained its chemical stability and remained active upon TC degradation which makes it a promising candidate for wastewater treatment.
Collapse
Affiliation(s)
- Hanieh Shahabinejad
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran.
| | - Feridun Esmaeilzadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran
| | - Faezeh Hashemi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
3
|
Wang Y, Yang P, Gong Y, Xiao Z, Xiao W, Xin L, Wu Z, Wang L. CoNiFe alloy nanoparticles encapsulated into nitrogen-doped carbon nanotubes toward superior electrocatalytic overall water splitting in alkaline freshwater/seawater under large-current density. J Chem Phys 2023; 159:134701. [PMID: 37787139 DOI: 10.1063/5.0168354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023] Open
Abstract
Developing bifunctional catalysts for overall water splitting with high activity and durability at high current density remains a challenge. In an attempt to overcome this bottleneck, in this work, unique CoNiFe-layered double hydroxide nanoflowers are in situ grown on nickel-iron (NiFe) foam through a corrosive approach and following a chemical vapor deposition process to generate nitrogen-doped carbon nanotubes at the presence of melamine (CoNiFe@NCNTs). The coupling effects between various metal species act a key role in accelerating the reaction kinetics. Moreover, the in situ formed NCNTs also favor promoting electrocatalytic activity and stability. For oxygen evolution reaction it requires low overpotentials of 330 and 341 mV in 1M KOH and 1M KOH + seawater to drive 500 mA cm-2. Moreover, water electrolysis can be operated with CoNiFe@NCNTs as both anode and cathode with small voltages of 1.95 and 1.93 V to achieve 500 mA cm-2 in 1M KOH and 1M KOH + seawater, respectively.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Pengfei Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuecheng Gong
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Zhenyu Xiao
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
| | - Liantao Xin
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Zexing Wu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| |
Collapse
|
4
|
Hou W, Chen C, Xie D, Xu Y. Substituted Ti(IV) in Ce-UiO-66-NH 2 Metal-Organic Frameworks Increases H 2 and O 2 Evolution under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2911-2921. [PMID: 36609181 DOI: 10.1021/acsami.2c18389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) as photocatalysts have received increasing attention. In this work, a dual metal-substituted UiO-66-NH2 (Ti/Ce-MOF) containing different Ti/Ce mole ratios (x = 0-2.46) has been prepared via post-synthetic exchange between Ce-UiO-66 and TiCl4, followed by amination. The solid had a high surface area (828-937 m2/g) and a large pore volume (0.451-0.507 m3/g). Under visible light, Ti/Ce-MOF showed x-dependent activity for H2O reduction and oxidation on a film electrode, respectively. However, such a change for H2 evolution in a Na2S/Na2SO3 aqueous solution was observed only after CdS loading. In combination with the photoluminescence and band parameters, we propose that the photoactivity of Ti/Ce-MOF for redox reaction is determined by its ability for electron transfer. Furthermore, there is an interfacial electron transfer from Ti/Ce-MOF to CdS and a hole transfer from CdS to Ti/Ce-MOF, respectively, significantly improving the efficiency of charge separation for redox reactions. This work offers a new insight that Ti substitution benefits the performance of Ce-based MOF.
Collapse
Affiliation(s)
- Wenqing Hou
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chen Chen
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Diya Xie
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yiming Xu
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
5
|
Xiao JD, Li R, Jiang HL. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. SMALL METHODS 2023; 7:e2201258. [PMID: 36456462 DOI: 10.1002/smtd.202201258] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) represent a novel class of crystalline inorganic-organic hybrid materials with tunable semiconducting behavior. MOFs have potential for application in photocatalysis to produce sustainable solar fuels, owing to their unique structural advantages (such as clarity and modifiability) that can facilitate a deeper understanding of the structure-activity relationship in photocatalysis. This review takes the photocatalytic active sites as a particular perspective, summarizing the progress of MOF-based photocatalysis for solar fuel production; mainly including three categories of solar-chemical conversions, photocatalytic water splitting to hydrogen fuel, photocatalytic carbon dioxide reduction to hydrocarbon fuels, and photocatalytic nitrogen fixation to high-energy fuel carriers such as ammonia. This review focuses on the types of active sites in MOF-based photocatalysts and discusses their enhanced activity based on the well-defined structure of MOFs, offering deep insights into MOF-based photocatalysis.
Collapse
Affiliation(s)
- Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
7
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired Metalation of the Metal-Organic Framework MIL-125-NH 2 for Photocatalytic NADH Regeneration and Gas-Liquid-Solid Three-Phase Enzymatic CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202206283. [PMID: 35585038 DOI: 10.1002/anie.202206283] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 01/06/2023]
Abstract
Coenzyme NADH regeneration is crucial for sustained photoenzymatic catalysis of CO2 reduction. However, light-driven NADH regeneration still suffers from the low regeneration efficiency and requires the use of a homogeneous Rh complex. Herein, a Rh complex-based electron transfer unit was chemically attached onto the linker of the MIL-125-NH2 . The coupling between the light-harvesting iminopyridine unit and electron-transferring Rh-complex facilitated the photo-induced electron transfer for the NADH regeneration with the yield of 66.4 % in 60 mins for 5 cycles. The formate dehydrogenase was further deposited onto the hydrophobic layer of the membrane by a reverse filtering technique, which forms the gas-liquid-solid reaction interface around the enzyme site. It gave an enhanced formic acid yield of 9.5 mM in 24 hours coupled with the in situ regenerated NADH. The work could shed light on the construction of integrated inorganic-enzyme hybrid systems for artificial photosynthesis.
Collapse
Affiliation(s)
- Gang Lin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Yutao Hua
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dianxing Ju
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
9
|
Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired Metalation of the Metal‐Organic Framework MIL‐125‐NH
2
for Photocatalytic NADH Regeneration and Gas‐Liquid‐Solid Three‐Phase Enzymatic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Lin
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao 266101 P. R. China
| | - Yutao Hua
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Changchao Jia
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Dianxing Ju
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Jian Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao 266101 P. R. China
| |
Collapse
|
10
|
Tripathy SP, Subudhi S, Ray A, Behera P, Bhaumik A, Parida K. Mixed-Valence Bimetallic Ce/Zr MOF-Based Nanoarchitecture: A Visible-Light-Active Photocatalyst for Ciprofloxacin Degradation and Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1766-1780. [PMID: 35080880 DOI: 10.1021/acs.langmuir.1c02873] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A mixed-valency bimetallic Ce/Zr MOF with Ce3+/Ce4+ ions incorporated and an oxygen vacancy-rich single-component photocatalyst have been designed through the one-step solvothermal route to harness photons from the visible-light spectrum for green energy (H2) generation and ciprofloxacin (CIP) degradation. The one-pot-engineered bimetallic Ce/Zr MOF shows visible-light-active characteristics accompanied by a narrower band gap, along with enhanced exciton separation and superior ligand-to-metal charge transfer (LMCT), due to the presence of an interconvertible Ce3+/Ce4+ ions pair in comparison to its pristine MOF counterpart. The Ce ion insertion led to increase in electron density around the Zr4+ ion, along with generation of some oxygen vacancies (OV), which cumulatively led to the rise in the photo-reaction output. The synthesized UNH (Ce/Zr 1:1) MOF displayed a boosted photocatalytic H2 production rate of 468.30 μmol h-1 (ACE = 3.51%), which is around fourfolds higher than that of pristine MOFs. Moreover, for CIP photodegradation, the UNH (Ce/Zr 1:1) shows an enhanced efficiency of 90.8% and follows pseudo-first-order kinetics with a rate constant of 0.0363. Typically, the active species involved in the photo-redox reaction of the CIP photodegradation follows the order hydroxyl radical (OH•) < superoxide radical (O2•-), as confirmed by the TA and NBT tests. Consequently, the bimetallic Ce/Zr MOF can be readily employed as a robust photocatalyst with enhanced tendencies towards CIP degradation and H2 evolution.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Asim Bhaumik
- School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| |
Collapse
|
11
|
Gu JX, Chen H, Ren Y, Gu ZG, Li G, Xu WJ, Yang XY, Wen JX, Wu JT, Jin HG. A Novel Cerium(IV)-Based Metal-Organic Framework for CO 2 Chemical Fixation and Photocatalytic Overall Water Splitting. CHEMSUSCHEM 2022; 15:e202102368. [PMID: 34766733 DOI: 10.1002/cssc.202102368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Cerium (IV)-based metal-organic frameworks (MOFs) are highly desirable due to their unique potential in fields such as redox catalysis and photocatalysis. However, due to the high reduction potential of CeIV species in solution, it is still a great challenge to synthesize CeIV -MOFs with novel structures, which are extremely dominated by the hexanuclear Ce-O cluster inorganic building units (IBUs). Herein, a Ce-O IBU chain containing CeIV -MOF, CSUST-3 (CSUST: Changsha University of Science and Technology), was successfully prepared using the kinetic stabilization study of UiO-66(Ce)-NDC (H2 NDC=2,6-naphthalenedicarboxylic acid). Furthermore, owing to the superior redox activity, Lewis acidity and semiconductor-like behavior owing to Ce4+ , activated CSUST-3 was demonstrated to be an excellent catalyst for CO2 chemical fixation. One-pot synthesis of styrene carbonate from styrene and CO2 was achieved under mild conditions (1 atm CO2 , 80 °C, and solvent free). Moreover, activated CSUST-3 was shown to be a remarkable co-catalyst-free photocatalyst for overall water splitting (OWS), rendering 59 μmol g-1 h-1 of H2 and 22 μmol g-1 h-1 of O2 under simulated sunlight irradiation (Na2 S-Na2 SO3 as sacrificial agent).
Collapse
Affiliation(s)
- Jia-Xin Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Hao Chen
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Ren
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Zhi-Gang Gu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangli Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China
| | - Wen-Jie Xu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xin-Yu Yang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Jian-Xin Wen
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Jing-Tao Wu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China
| | - Hong-Guang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| |
Collapse
|
12
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
13
|
Substituent Effects on the Photocatalytic Properties of A Symmetric Covalent Organic Framework. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2205088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Kolobov N, Goesten MG, Gascon J. Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nikita Kolobov
- King Abdullah University of Science and Technology KAUST Catalysis Center Advanced Catalytic Materials Thuwal 23955 Saudi Arabia
| | - Maarten G. Goesten
- Aarhus University Department of Chemistry Langelandsgade 140 8000 Aarhus Denmark
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center Advanced Catalytic Materials Thuwal 23955 Saudi Arabia
| |
Collapse
|
15
|
Kolobov N, Goesten MG, Gascon J. Metal-Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angew Chem Int Ed Engl 2021; 60:26038-26052. [PMID: 34213064 DOI: 10.1002/anie.202106342] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/11/2022]
Abstract
In the realm of solids, metal-organic frameworks (MOFs) offer unique possibilities for the rational engineering of tailored physical properties. These derive from the modular, molecular make-up of MOFs, which allows for the selection and modification of the organic and inorganic building units that construct them. The adaptable properties make MOFs interesting materials for photocatalysis, an area of increasing significance. But the molecular and porous nature of MOFs leaves the field, in some areas, juxtapositioned between semiconductor physics and homogeneous photocatalysis. While descriptors from both fields are applied in tandem, the gap between theory and experiment has widened in some areas, and arguably needs fixing. Here we review where MOFs have been shown to be similar to conventional semiconductors in photocatalysis, and where they have been shown to be more like infinite molecules in solution. We do this from the perspective of band theory, which in the context of photocatalysis, covers both the molecular and nonmolecular principles of relevance.
Collapse
Affiliation(s)
- Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials, Thuwal, 23955, Saudi Arabia
| | - Maarten G Goesten
- Aarhus University, Department of Chemistry, Langelandsgade 140., 800, Aarhus, Denmark
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
16
|
Zhang Z, Peh SB, Krishna R, Kang C, Chai K, Wang Y, Shi D, Zhao D. Optimal Pore Chemistry in an Ultramicroporous Metal-Organic Framework for Benchmark Inverse CO 2 /C 2 H 2 Separation. Angew Chem Int Ed Engl 2021; 60:17198-17204. [PMID: 34043271 DOI: 10.1002/anie.202106769] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Isolation of CO2 from acetylene (C2 H2 ) via CO2 -selective sorbents is an energy-efficient technology for C2 H2 purification, but a strategic challenge due to their similar physicochemical properties. There is still no specific methodology for constructing sorbents that preferentially trap CO2 over C2 H2 . We report an effective strategy to construct optimal pore chemistry in a CeIV -based ultramicroporous metal-organic framework CeIV -MIL-140-4F, based on charge-transfer effects, for efficient inverse CO2 /C2 H2 separation. The ligand-to-metal cluster charge transfer is facilitated by CeIV with low-lying unoccupied 4f orbitals and electron-withdrawing F atoms functionalized tetrafluoroterephthalate, affording a perfect pore environment to match CO2 . The exceptional CO2 uptake (151.7 cm3 cm-3 ) along with remarkable separation selectivities (above 40) set a new benchmark for inverse CO2 /C2 H2 separation, which is verified via simulated and experimental breakthrough experiments. The unique CO2 recognition mechanism is further unveiled by in situ powder X-ray diffraction experiments, Fourier-transform infrared spectroscopy measurements, and molecular calculations.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Kungang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
17
|
Zhang Z, Peh SB, Krishna R, Kang C, Chai K, Wang Y, Shi D, Zhao D. Optimal Pore Chemistry in an Ultramicroporous Metal–Organic Framework for Benchmark Inverse CO
2
/C
2
H
2
Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kungang Chai
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
18
|
Shi X, Cao B, Liu J, Zhang J, Du Y. Rare-Earth-Based Metal-Organic Frameworks as Multifunctional Platforms for Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005371. [PMID: 33605028 DOI: 10.1002/smll.202005371] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The development of catalytic conversion is very important for human society. In the catalytic process, metal-organic frameworks (MOFs) can be utilized to obtain effective catalysts for their porous structures and adjustable properties. In addition, the introduction of rare-earth (RE) elements with unique properties for catalysts can realize good catalytic performances. Thus, the RE-MOF related catalysts for catalytic conversion are summarized. Due to the cooperation of RE elements and porous MOF structures, the RE-based MOFs can be used as promising catalysts or precursors/supports for other catalysts in the areas of energy conversion, environmental governance, and organic synthesis. These aggregated studies highlight the RE-MOFs as promising candidates for catalytic conversion.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, 028000, P. R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
19
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Ning J, Truhlar DG. Spin-Orbit Coupling Changes the Identity of the Hyper-Open-Shell Ground State of Ce +, and the Bond Dissociation Energy of CeH + Proves to Be Challenging for Theory. J Chem Theory Comput 2021; 17:1421-1434. [PMID: 33576629 DOI: 10.1021/acs.jctc.0c01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerium (Ce) plays important roles in catalysis. Its position in the sixth period of the periodic table leads to spin-orbit coupling (SOC) and other open-shell effects that make the quantum mechanical calculation of cerium compounds challenging. In this work, we investigated the low-lying spin states of Ce+ and the bond energy of CeH+, both by multiconfigurational methods, in particular, SA-CASSCF, MC-PDFT, CASPT2, XMS-PDFT, and XMS-CASPT2, and by single-configurational methods, namely, Hartree-Fock theory and unrestricted Kohn-Sham density functional theory with 34 choices of the exchange-correlation functional. We found that only CASPT2, XMS-CASPT2, and SA-CASSCF (among the five multiconfigurational methods) and GAM, HCTH, SOGGA11, and OreLYP (among the 35 single-configuration methods) successfully predict that the SOC-free ground spin state of Ce+ is a doublet state, and CASPT2 and GAM give the most accurate multireference and single-reference calculations, respectively, of the excitation energy of the first SOC-free excited state for Ce+. We calculated that the ground doublet state of Ce+ is an intra-atomic hyper-open-shell state. We calculated the spin-orbit energy (ESO) of Ce+ by the five multiconfigurational methods and found that ESO calculated by CASPT2 is the closest to the experimental value. Taking advantage of the availability of an experimental D0 for CeH+ as a way to provide a unique test of theory, we showed that all the multiconfigurational methods overestimate D0 by at least 246 meV (5.7 kcal/mol), and only three functionals, namely, SOGGA, MN15, and GAM, have an error of D0 that is less than 200 meV (5 kcal/mol).
Collapse
Affiliation(s)
- Jiaxin Ning
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
21
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
22
|
Fang ZB, Liu TT, Liu J, Jin S, Wu XP, Gong XQ, Wang K, Yin Q, Liu TF, Cao R, Zhou HC. Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO 2 Photoreduction via Rational Design of Coordination Spheres on Metal-Organic Frameworks. J Am Chem Soc 2020; 142:12515-12523. [PMID: 32564596 DOI: 10.1021/jacs.0c05530] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recombination of electron-hole pairs severely detracts from the efficiency of photocatalysts. This issue could be addressed in metal-organic frameworks (MOFs) through optimization of the charge-transfer kinetics via rational design of structures at atomic level. Herein, a pyrazolyl porphyrinic Ni-MOF (PCN-601), integrating light harvesters, active catalytic sites, and high surface areas, has been demonstrated as a superior and durable photocatalyst for visible-light-driven overall CO2 reduction with H2O vapor at room temperature. Kinetic studies reveal that the robust coordination spheres of pyrazolyl groups and Ni-oxo clusters endow PCN-601 with proper energy band alignment and ultrafast ligand-to-node electron transfer. Consequently, the CO2-to-CH4 production rate of PCN-601 far exceeds those of the analogous MOFs based on carboxylate porphyrin and the classic Pt/CdS photocatalyst by more than 3- and 20-fold, respectively. The reaction avoids the use of hole scavengers and proceeds in a gaseous phase which can take full advantage of the high gas uptake of MOFs. This work demonstrates that the rational design of coordination spheres in MOF structures not only reconciles the contradiction between reactivity and stability but also greatly promotes the interfacial charge transfer to achieve optimized kinetics, providing guidance for the design of highly efficient MOF photocatalysts.
Collapse
Affiliation(s)
- Zhi-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Ting-Ting Liu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, PR China
| | - Junxue Liu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kecheng Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|
23
|
Wang X, Zhang X, Gao W, Sang Y, Wang Y, Liu H. Self-reduction derived nickel nanoparticles in CdS/Ni(OH)2 heterostructure for enhanced photocatalytic hydrogen evolution. J Chem Phys 2020; 152:214701. [DOI: 10.1063/5.0008374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Xiaoning Wang
- School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaofei Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wenqiang Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yanmin Wang
- School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| |
Collapse
|
24
|
Nagarjun N, Concepcion P, Dhakshinamoorthy A. Influence of oxophilic behavior of UiO‐66(Ce) metal–organic framework with superior catalytic performance in Friedel‐Crafts alkylation reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Patricia Concepcion
- Instituto de Tecnologia Quimica CSIV‐UPVUniversitat Politecnica de Valencia Av. De los Naranjos s/n 46022 Valencia Spain
| | | |
Collapse
|
25
|
Syzgantseva MA, Stepanov NF, Syzgantseva OA. Band Alignment as the Method for Modifying Electronic Structure of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17611-17619. [PMID: 32208619 DOI: 10.1021/acsami.0c02094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electronic-level ordering in metal-organic frameworks (MOFs) is a route to modulate their electronic properties such as optical absorption, band alignment, work function, charge separation, charge carrier lifetimes, and ground- or excited-state conductivity. A systematic application of this approach requires the knowledge on how a MOF chemical composition affects its electronic structure. In this work, the fundamental principles for selecting MOF components to achieve targeted level alignment are considered. Correlations between the electronic parameters of building blocks and MOF band structure are analyzed. The factors affecting the energy position of constituents are discussed. In particular, the impact of the chemical composition of ligands, including the structure of its scaffold and side groups, on their energy positions in MOFs is addressed. Besides, the effect of the choice of reference potential and surface termination on the band alignment is investigated. The performance of several density functionals in the computation of absolute band positions is assessed. Finally, general principles for the modification of the MOF electronic structure are formulated and the routes to achieve an appropriate band alignment with carrier-transporting materials, co-catalysts, and redox reaction potentials are suggested.
Collapse
Affiliation(s)
- Maria A Syzgantseva
- Laboratory of Quantum Mechanics and Molecular Structure, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikolay F Stepanov
- Laboratory of Quantum Mechanics and Molecular Structure, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga A Syzgantseva
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
26
|
Jacobsen J, Ienco A, D'Amato R, Costantino F, Stock N. The chemistry of Ce-based metal-organic frameworks. Dalton Trans 2020; 49:16551-16586. [PMID: 33146175 DOI: 10.1039/d0dt02813d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal-organic frameworks (MOFs) have gained widespread attention due to their modular construction that allows the tuning of their properties. Within this vast class of compounds, metal carboxylates containing tri- and tetravalent metal ions have been in the focus of many studies due to their often high thermal and chemical stabilities. Cerium has a rich chemistry, which depends strongly on its oxidation state. Ce(iii) exhibits properties typically observed for rare earth elements, while Ce(iv) is mostly known for its oxidation behaviour. In MOF chemistry this is reflected in their unique optical and catalytic properties. The synthetic parameters for Ce(iii)- and Ce(iv)-MOFs also differ substantially and conditions must be chosen to prevent reduction of Ce(iv) for the formation of the latter. Ce(iii)-MOFs are usually reported in comprehensive studies together with those constructed with other RE elements and normally they are isostructural. They exhibit a greater structural diversity, which is reflected in the larger variety of inorganic building units. In contrast, the synthesis conditions of Ce(iv)-MOFs were only recently (2015) established. These lead selectively to hexanuclear Ce-O clusters that are well-known for Zr-MOFs and therefore very similar structural and isoreticluar chemistry is found. Hence Ce(iv)-MOFs exhibit often high porosity, while only a few porous Ce(iii)-MOFs have been described. Some of these show structural flexibility which makes them interesting for separation processes. For Ce(iv)-MOFs the redox properties are most relevant. Thus, they are intensively discussed for catalytic, photocatalytic and sensing applications. In this perspective, the synthesis, structural chemistry and properties of Ce-MOFs are summarized.
Collapse
Affiliation(s)
- Jannick Jacobsen
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| | | | | | | | | |
Collapse
|
27
|
Wu XP, Gagliardi L, Truhlar DG. Multilink F* Method for Combined Quantum Mechanical and Molecular Mechanical Calculations of Complex Systems. J Chem Theory Comput 2019; 15:4208-4217. [PMID: 31145606 DOI: 10.1021/acs.jctc.9b00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) studies on catalysis in metal-organic frameworks (MOFs) are relatively undeveloped in contrast to the wide use of QM/MM for enzyme catalysis. One reason is that the currently available methods for treating QM-MM boundaries are not fully compatible with the combination of features in MOFs, namely, their high connectivity, their polar bonds (e.g., metal-oxygen bonds), and their potential boundary atoms with high partial atomic charges. The treatment of polar bonds can be improved by using tuned link atoms, but both the widely used H link atom method and the F* link atom method provide limited options in placing the QM-MM boundary in MOFs and other covalently bonded solids, which seriously reduces the efficiency of QM/MM calculations. Here, we propose a generalized version of the F* link atom method with greater flexibility for the placement of the QM-MM boundary in MOFs and with a practical scheme for tuning. The new method, called the multilink F* method, allows a large part of an inorganic node of a MOF to be partitioned into the MM subsystem to increase the efficiency. Our validation calculations on dimerization of ethylene to 1-butene by a nickel catalyst supported on a MOF show that the overall performance of QM/MM calculations with the multilink F* method is excellent for energies, geometries, and partial atomic charges.
Collapse
Affiliation(s)
- Xin-Ping Wu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
28
|
Elcheikh Mahmoud M, Audi H, Assoud A, Ghaddar TH, Hmadeh M. Metal–Organic Framework Photocatalyst Incorporating Bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction. J Am Chem Soc 2019; 141:7115-7121. [DOI: 10.1021/jacs.9b01920] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mahmoud Elcheikh Mahmoud
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
| | - Hassib Audi
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
| | - Abdeljalil Assoud
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Tarek H. Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
| | - Mohamad Hmadeh
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
| |
Collapse
|
29
|
Lian T, Koper MTM, Reuter K, Subotnik JE. Special Topic on Interfacial Electrochemistry and Photo(electro)catalysis. J Chem Phys 2019; 150:041401. [PMID: 30709260 DOI: 10.1063/1.5088351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interfacial electrochemistry and photo(electro)catalysis are key processes that convert the energy of photons or electrons to chemical bonds in many energy conversion and storage technologies. Achieving a molecular level understanding of the fundamental interfacial structure, energetics, dynamics, and reaction mechanisms that govern these processes represents a broad frontier for chemical physics and physical chemistry. This Special Topic contains a collection of articles that range from the development of new experimental and computational techniques to the novel application of those techniques for mechanistic studies, as the principal investigators seek a fundamental molecular understanding of both electrode/electrolyte interfaces and the relevant electrocatalytic, photocatalytic, and photoelectrochemical reactions taking place thereabout. Altogether, this collection of articles captures the current state of this very active, frontier research field and highlights the current and remaining key scientific challenges and opportunities.
Collapse
Affiliation(s)
- Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Abednatanzi S, Gohari Derakhshandeh P, Depauw H, Coudert FX, Vrielinck H, Van Der Voort P, Leus K. Mixed-metal metal–organic frameworks. Chem Soc Rev 2019; 48:2535-2565. [DOI: 10.1039/c8cs00337h] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mixed-metal MOFs contain at least 2 different metal ions presenting promising potential in heterogeneous catalysis, gas sorption/separation, luminescence and sensing.
Collapse
Affiliation(s)
- Sara Abednatanzi
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | | | - Hannes Depauw
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | | | - Henk Vrielinck
- Department of Solid State Sciences
- Ghent University
- 9000 Gent
- Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | - Karen Leus
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
31
|
Zhang Y, Chen H, Pan Y, Zeng X, Jiang X, Long Z, Hou X. Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chem Commun (Camb) 2019; 55:13959-13962. [DOI: 10.1039/c9cc06562h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For the first time, UiO-66(Ce) was endowed with greatly improved redox photocatalytic activity via Ti incorporation, based on the formation of oxygen vacancies.
Collapse
Affiliation(s)
- Yajun Zhang
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Hanjiao Chen
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Yi Pan
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
- Institute of Chemistry, National Institute of Measurement and Testing Technology
| | - Xiaoliang Zeng
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Xiaofang Jiang
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Zhou Long
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Xiandeng Hou
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
- Department of Chemistry
| |
Collapse
|