1
|
Hwang W, Austin SL, Blondel A, Boittier ED, Boresch S, Buck M, Buckner J, Caflisch A, Chang HT, Cheng X, Choi YK, Chu JW, Crowley MF, Cui Q, Damjanovic A, Deng Y, Devereux M, Ding X, Feig MF, Gao J, Glowacki DR, Gonzales JE, Hamaneh MB, Harder ED, Hayes RL, Huang J, Huang Y, Hudson PS, Im W, Islam SM, Jiang W, Jones MR, Käser S, Kearns FL, Kern NR, Klauda JB, Lazaridis T, Lee J, Lemkul JA, Liu X, Luo Y, MacKerell AD, Major DT, Meuwly M, Nam K, Nilsson L, Ovchinnikov V, Paci E, Park S, Pastor RW, Pittman AR, Post CB, Prasad S, Pu J, Qi Y, Rathinavelan T, Roe DR, Roux B, Rowley CN, Shen J, Simmonett AC, Sodt AJ, Töpfer K, Upadhyay M, van der Vaart A, Vazquez-Salazar LI, Venable RM, Warrensford LC, Woodcock HL, Wu Y, Brooks CL, Brooks BR, Karplus M. CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed. J Phys Chem B 2024; 128:9976-10042. [PMID: 39303207 PMCID: PMC11492285 DOI: 10.1021/acs.jpcb.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
- Center for
AI and Natural Sciences, Korea Institute
for Advanced Study, Seoul 02455, Republic
of Korea
| | - Steven L. Austin
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Arnaud Blondel
- Institut
Pasteur, Université Paris Cité, CNRS UMR3825, Structural
Bioinformatics Unit, 28 rue du Dr. Roux F-75015 Paris, France
| | - Eric D. Boittier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Stefan Boresch
- Faculty of
Chemistry, Department of Computational Biological Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
| | - Matthias Buck
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | - Joshua Buckner
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Hao-Ting Chang
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Xi Cheng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yeol Kyo Choi
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jhih-Wei Chu
- Institute
of Bioinformatics and Systems Biology, Department of Biological Science
and Technology, Institute of Molecular Medicine and Bioengineering,
and Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan,
ROC
| | - Michael F. Crowley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Qiang Cui
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Ana Damjanovic
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Physics and Astronomy, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuqing Deng
- Shanghai
R&D Center, DP Technology, Ltd., Shanghai 201210, China
| | - Mike Devereux
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Xinqiang Ding
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael F. Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jiali Gao
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David R. Glowacki
- CiTIUS
Centro Singular de Investigación en Tecnoloxías Intelixentes
da USC, 15705 Santiago de Compostela, Spain
| | - James E. Gonzales
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mehdi Bagerhi Hamaneh
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | | | - Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Jing Huang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yandong Huang
- College
of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Phillip S. Hudson
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Medicine
Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shahidul M. Islam
- Department
of Chemistry, Delaware State University, Dover, Delaware 19901, United States
| | - Wei Jiang
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael R. Jones
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Silvan Käser
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nathan R. Kern
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering, Institute for Physical Science
and Technology, Biophysics Program, University
of Maryland, College Park, Maryland 20742, United States
| | - Themis Lazaridis
- Department
of Chemistry, City College of New York, New York, New York 10031, United States
| | - Jinhyuk Lee
- Disease
Target Structure Research Center, Korea
Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department
of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Xiaorong Liu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yun Luo
- Department
of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, United States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lennart Nilsson
- Karolinska
Institutet, Department of Biosciences and
Nutrition, SE-14183 Huddinge, Sweden
| | - Victor Ovchinnikov
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universitá
di Bologna, Bologna 40127, Italy
| | - Soohyung Park
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Carol Beth Post
- Borch Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samarjeet Prasad
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jingzhi Pu
- Department
of Chemistry and Chemical Biology, Indiana
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yifei Qi
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Daniel R. Roe
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Benoit Roux
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Andrew C. Simmonett
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kai Töpfer
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Meenu Upadhyay
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin Karplus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Laboratoire
de Chimie Biophysique, ISIS, Université
de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Wang J, San Vicente Veliz JC, Meuwly M. High-Energy Reaction Dynamics of N 3. J Phys Chem A 2024; 128:8322-8332. [PMID: 39052035 DOI: 10.1021/acs.jpca.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The atom-exchange and atomization dissociation dynamics for the N(4S) + N2(1Σg+) reaction are studied using a reproducing kernel Hilbert space (RKHS)-based, global potential energy surface (PES) at the MRCI-F12/aug-cc-pVTZ-F12 level of theory (MRCI, multireference configuration interaction). For the atom exchange reaction (NANB + NC → NANC + NB), computed thermal rates and their temperature dependence from quasi-classical trajectory (QCT) simulations agree to within error bars with the available experiments. Companion QCT simulations using a recently published CASPT2-based PES confirm these findings. For the atomization reaction, leading to three N(4S) atoms, the computed rates from the RKHS-PES overestimate the experimentally reported rates by 1 order of magnitude, whereas those from the permutationally invariant polynomial (PIP)-PES agree favorably, and the T dependence of both computations is consistent with the experiment. These differences can be traced back to the different methods and basis sets used. The lifetime of the metastable N3 molecule is estimated to be ∼200 fs depending on the initial state of the reactants. Finally, neural-network-based exhaustive state-to-distribution models are presented using both PESs for the atom exchange reaction. These models will be instrumental for a broader exploration of the reaction dynamics of air.
Collapse
Affiliation(s)
- JingChun Wang
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Alves MO, Mota VC, Braga JP, Varandas AJC, Guo H, Galvão BRL. High-accuracy DMBE potential energy surface for CNO(A''4) and the rate coefficients for the C + NO reaction in the A'2, A''2, and A''4 states. J Chem Phys 2023; 159:214307. [PMID: 38054514 DOI: 10.1063/5.0180918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
An accurate potential energy surface (PES) for the lowest lying A''4 state of the CNO system is presented based on explicitly correlated multi-reference configuration interaction calculations with quadruple zeta basis set (MRCI-F12/cc-pVQZ-F12). The ab initio energies are fitted using the double many-body expansion method, thus incorporating long-range energy terms that can accurately describe the electrostatic and dispersion interactions with physically motivated decaying functions. Together with the previously fitted lowest A'2 and A''2 states using the same theoretical framework, this constitutes a new set of PESs that are suitable to predict rate coefficients for all atom-diatom reactions of the CNO system. We use this set of PESs to calculate thermal rate coefficients for the C(P3) + NO(Π2) reaction and compare the temperature dependence and product branching ratios with experimental results. The comparison between theory and experiment is shown to be improved over previous theoretical studies. We highlight the importance of the long-range interactions for low-temperature rate coefficients.
Collapse
Affiliation(s)
- Márcio O Alves
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil
| | - Vinícius C Mota
- Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil
| | - João P Braga
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - António J C Varandas
- Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
- Coimbra Chemistry Centre and Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Breno R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
4
|
Montes de Oca-Estévez MJ, Darna B, García-Ruiz B, Prosmiti R, González-Lezana T, Koner D. Ar+ ArH + Reactive Collisions of Astrophysical Interest: The Case of 36 Ar. Chemphyschem 2023; 24:e202300450. [PMID: 37477047 DOI: 10.1002/cphc.202300450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The reactive collision between 36 Ar and the 36 ArH+ species has been investigated by means of quantum mechanical (QM), quasiclassical trajectories (QCT) and statistical quantum mechanical (SQM) approaches. Reaction probabilities, cross sections as a function of the energy and rate constants in terms of the temperature have been obtained. Cumulative distributions as a function of the collision time and the inspection of selected QCT corresponding to specific dynamical mechanisms have been analysed. Predictions by means of the SQM method are in good agreement with the QM results, thus supporting the complex-forming nature of the process.
Collapse
Affiliation(s)
- María Judit Montes de Oca-Estévez
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006, Madrid, Spain
- Atelgraphics S.L., Mota de Cuervo 42, 28043, Madrid, Spain
- Doctoral Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, UAM, Madrid, Spain
| | - Beatriz Darna
- Faculty of Science, KU Leuven, Celestijnenlaan 200H, box 2100, 3001 Heverlee, Leuven, Belgium
| | - Borja García-Ruiz
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006, Madrid, Spain
| | - Rita Prosmiti
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006, Madrid, Spain
| | | | - Debasish Koner
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, 502284, Telangana, India
| |
Collapse
|
5
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
7
|
Goswami S, San Vicente Veliz JC, Upadhyay M, Bemish RJ, Meuwly M. Quantum and quasi-classical dynamics of the C( 3P) + O 2( 3Σ-g) → CO( 1Σ +) + O( 1D) reaction on its electronic ground state. Phys Chem Chem Phys 2022; 24:23309-23322. [PMID: 36165004 PMCID: PMC9533374 DOI: 10.1039/d2cp02840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the C(3P) + O2(3Σ−g) → CO(1Σ+) + O(1D) reaction on its electronic ground state is investigated by using time-dependent wave packet propagation (TDWP) and quasi-classical trajectory (QCT) simulations. For the moderate collision energies considered (Ec = 0.001 to 0.4 eV, corresponding to a range from 10 K to 4600 K) the total reaction probabilities from the two different treatments of the nuclear dynamics agree very favourably. The undulations present in P(E) from the quantum mechanical treatment can be related to stabilization of the intermediate CO2 complex with lifetimes on the 0.05 ps time scale. This is also confirmed from direct analysis of the TDWP simulations and QCT trajectories. Product diatom vibrational and rotational level resolved state-to-state reaction probabilities from TDWP and QCT simulations agree well except for the highest product vibrational states (v′ ≥ 15) and for the lowest product rotational states (j′ ≤ 10). Opening of the product vibrational level CO(v′ = 17) requires ∼0.2 eV from QCT and TDWP simulations with O2(j = 0) and decreases to 0.04 eV if all initial rotational states are included in the QCT analysis, compared with Ec > 0.04 eV obtained from experiments. It is thus concluded that QCT simulations are suitable for investigating and realistically describe the C(3P) + O2(3Σ−g) → CO(1Σ+) + O(1D) reaction down to low collision energies when compared with results from a quantum mechanical treatment using TDWPs. The dynamics of the C(3P) + O2(3Σ−g) → CO(1Σ+) + O(1D) reaction on its electronic ground state is investigated by using time-dependent wave packet propagation (TDWP) and quasi-classical trajectory (QCT) simulations.![]()
Collapse
Affiliation(s)
- Sugata Goswami
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | | | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Raymond J Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland. .,Department of Chemistry, Brown University, RI, USA
| |
Collapse
|
8
|
Töpfer K, Upadhyay M, Meuwly M. Quantitative molecular simulations. Phys Chem Chem Phys 2022; 24:12767-12786. [PMID: 35593769 PMCID: PMC9158373 DOI: 10.1039/d2cp01211a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
9
|
Patra S, San Vicente Veliz JC, Koner D, Bieske EJ, Meuwly M. Photodissociation dynamics of N3+. J Chem Phys 2022; 156:124307. [DOI: 10.1063/5.0085081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of [Formula: see text] excited from its (linear) 3[Formula: see text]/(bent) 3A″ ground to the first excited singlet and triplet states is investigated. Three-dimensional potential energy surfaces for the 1A′, 1A″, and 3A′ electronic states, correlating with the 1Δg and 3Πu states in linear geometry, for [Formula: see text] are constructed using high-level electronic structure calculations and represented as reproducing kernels. The reference ab initio energies are calculated at the MRCI+Q/aug-cc-pVTZ level of theory. For following the photodissociation dynamics in the excited states, rotational and vibrational distributions P( v′) and P( j′) for the N2 product are determined from vertically excited ground state distributions. Due to the different shapes of the ground state 3A″ potential energy surface and the excited states, appreciable angular momentum j′ ∼ 60 is generated in diatomic fragments. The lifetimes in the excited states extend to at least 50 ps. Notably, results from sampling initial conditions from a thermal ensemble and from the Wigner distribution of the ground state wavefunction are comparable.
Collapse
Affiliation(s)
- Sarbani Patra
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Evan J. Bieske
- Department of Chemistry, University of Melbourne, Parkville 3010, Australia
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
10
|
Meuwly M. Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ Quo Vadis?. J Phys Chem B 2022; 126:2155-2167. [PMID: 35286087 DOI: 10.1021/acs.jpcb.2c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas and in the condensed phase. This Perspective delineates the present status of the field from the efforts of others and some of our own work and discusses open questions and future prospects. The combination of physics-based long-range representations using multipolar charge distributions and kernel representations for the bonded interactions is shown to provide realistic models for the exploration of the infrared spectroscopy of molecules in solution. For reactions, empirical models connecting dedicated energy functions for the reactant and product states allow statistically meaningful sampling of conformational space whereas machine-learned energy functions are superior in accuracy. The future combination of physics-based models with machine-learning techniques and integration into all-purpose molecular simulation software provides a unique opportunity to bring such dynamics simulations closer to reality.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Arnold J, San Vicente Veliz JC, Koner D, Singh N, Bemish RJ, Meuwly M. Machine learning product state distributions from initial reactant states for a reactive atom–diatom collision system. J Chem Phys 2022; 156:034301. [DOI: 10.1063/5.0078008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian Arnold
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | | | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Narendra Singh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Raymond J. Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
12
|
Upadhyay M, Pezzella M, Meuwly M. Genesis of Polyatomic Molecules in Dark Clouds: CO 2 Formation on Cold Amorphous Solid Water. J Phys Chem Lett 2021; 12:6781-6787. [PMID: 34270244 DOI: 10.1021/acs.jpclett.1c01810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the formation of molecules under conditions relevant to interstellar chemistry is fundamental to characterize the chemical evolution of the universe. Using reactive molecular dynamics simulations with model-based or high-quality potential energy surfaces provides a means to specifically and quantitatively probe individual reaction channels at a molecular level. The formation of CO2 from collision of CO(1Σ) and O(1D) is characterized on amorphous solid water (ASW) under conditions typical in cold molecular clouds. Recombination takes place on the subnanosecond time scale and internal energy redistribution leads to stabilization of the product with CO2 remaining adsorbed on the ASW on extended time scales. Using a high-level, reproducing kernel-based potential energy surface for CO2, formation into and stabilization of CO2 and COO are observed.
Collapse
Affiliation(s)
- Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Marco Pezzella
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Koner D, Barrios L, González-Lezana T, Panda AN. Atom-Diatom Reactive Scattering Collisions in Protonated Rare Gas Systems. Molecules 2021; 26:4206. [PMID: 34299481 PMCID: PMC8304066 DOI: 10.3390/molecules26144206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
The study of the dynamics of atom-diatom reactions involving two rare gas (Rg) atoms and protons is of crucial importance given the astrophysical relevance of these processes. In a series of previous studies, we have been investigating a number of such Rg(1)+ Rg(2)H+→ Rg(2)+ Rg(1)H+ reactions by means of different numerical approaches. These investigations comprised the construction of accurate potential energy surfaces by means of ab initio calculations. In this work, we review the state-of-art of the study of these protonated Rg systems making special emphasis on the most relevant features regarding the dynamical mechanisms which govern these reactive collisions. The aim of this work therefore is to provide an as complete as possible description of the existing information regarding these processes.
Collapse
Affiliation(s)
- Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati 517507, Andhra Pradesh, India;
| | - Lizandra Barrios
- Department of Chemistry, CMS—Centre for Molecular Simulation, IQST—Institute for Quantum Science and Technology and Quantum Alberta, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
| | | | - Aditya N. Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India;
| |
Collapse
|
14
|
Korutla S, Koner D, Varandas AJC, Tammineni RR. Quantum and Classical Dynamics of the N( 2D) + N 2 Reaction on Its Ground Doublet State N 3(1 2A″) Potential Energy Surface. J Phys Chem A 2021; 125:5650-5660. [PMID: 34155884 DOI: 10.1021/acs.jpca.1c03198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The initial state-selected dynamics of the N(2D) + N2(X1∑) → N2(X1∑) + N(2D) exchange reaction on its electronic ground doublet state N3(12A″) potential energy surface (PES) has been studied here by time-dependent quantum mechanics (TDQM) and quasi-classical trajectory (QCT) methods. Dynamical attributes such as total reaction probabilities, state-selected integral cross sections, and initial state-selected rate constants have been calculated. The presence of metastable quasi-bound complexes in the collision process is confirmed by substantial oscillatory structures in the reaction probability curves. Also, rotational excitations of reagent N2 on the reactivity have been examined by calculating the probabilities for the two-body rotational angular momentum up to j = 10. We conclude that the reagent rotational excitation increases the reactivity. The TDQM results are compared with QCT results.
Collapse
Affiliation(s)
- Srikanth Korutla
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, India
| | - Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - António J C Varandas
- School of Physics and Physical Engineering, Qufu Normal University, 273165 Qufu, China.,Department of Physics, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil.,Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
15
|
Abstract
Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
16
|
San Vicente Veliz JC, Koner D, Schwilk M, Bemish RJ, Meuwly M. The C( 3P) + O 2( 3Σ g-) → CO 2 ↔ CO( 1Σ +) + O( 1D)/O( 3P) reaction: thermal and vibrational relaxation rates from 15 K to 20 000 K. Phys Chem Chem Phys 2021; 23:11251-11263. [PMID: 33949507 PMCID: PMC8133592 DOI: 10.1039/d1cp01101d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/10/2021] [Indexed: 11/24/2022]
Abstract
Thermal rates for the C(3P) + O2(3Σg-) ↔ CO(1Σ+)+ O(1D)/O(3P) reaction are investigated over a wide temperature range based on quasi classical trajectory (QCT) simulations on 3-dimensional, reactive potential energy surfaces (PESs) for the 1A', (2)1A', 1A'', 3A' and 3A'' states. These five states are the energetically low-lying states of CO2 and their PESs are computed at the MRCISD+Q/aug-cc-pVTZ level of theory using a state-average CASSCF reference wave function. Analysis of the different electronic states for the CO2 → CO + O dissociation channel rationalizes the topography of this region of the PESs. The forward rates from QCT simulations match measurements between 15 K and 295 K whereas the equilibrium constant determined from the forward and reverse rates is consistent with that derived from statistical mechanics at high temperature. Vibrational relaxation, O + CO(ν = 1,2) → O + CO(ν = 0), is found to involve both, non-reactive and reactive processes. The contact time required for vibrational relaxation to take place is τ ≥ 150 fs for non-reacting and τ ≥ 330 fs for reacting (oxygen atom exchange) trajectories and the two processes are shown to probe different parts of the global potential energy surface. In agreement with experiments, low collision energy reactions for the C(3P) + O2(3Σg-, ν = 0) → CO(1Σ+) + O(1D) lead to CO(1Σ+, ν' = 17) with an onset at Ec ∼ 0.15 eV, dominated by the 1A' surface with contributions from the 3A' surface. Finally, the barrier for the COA(1Σ+) + OB(3P) → COB(1Σ+) + OA(3P) atom exchange reaction on the 3A' PES yields a barrier of ∼7 kcal mol-1 (0.300 eV), consistent with an experimentally reported value of 6.9 kcal mol-1 (0.299 eV).
Collapse
Affiliation(s)
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Max Schwilk
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland. and University of Vienna, Faculty of Physics, 1090 Vienna, Austria
| | - Raymond J Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland. and Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Koner D. Quantum and quasiclassical dynamical simulations for the Ar 2H + on a new global analytical potential energy surface. J Chem Phys 2021; 154:054303. [PMID: 33557552 DOI: 10.1063/5.0039252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A new analytical potential energy surface (PES) has been constructed for the Ar2H+ system from a dataset consisting of a large number of ab initio energies computed using the coupled-cluster singles, doubles and perturbative triples method and aug-cc-pVQZ basis set. The long-range interaction is added to the diatomic potentials using a standard long range expansion form to better describe the asymptotic regions. The vibrational states for the most stable structures of the Ar2H+ system have been calculated, and few low lying states are assigned to quantum numbers. Reactive scattering studies have been performed for the Ar + Ar'H+ → Ar' + ArH+ proton exchange reaction on the newly generated PES. Reaction probability, cross sections, and rate constants are calculated for the Ar + Ar'H+(v = 0, j = 0) collisions within 0.01 eV-0.6 eV of relative translational energy using exact quantum dynamical simulations as well as quasiclassical trajectory (QCT) calculations. The effect of vibrational excitation of the reactants is also explored for the reaction. State averaged rate constants are calculated for the proton exchange reaction at different temperatures using the QCT method. The mechanistic pathways for the reaction are understood by analyzing the quasiclassical trajectories.
Collapse
Affiliation(s)
- Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
18
|
Alves MO, Gonçalves CEM, Braga JP, Mota VC, Varandas AJC, Galvão BRL. Accurate DMBE potential-energy surface for CNO( 2A″) and rate coefficients in C( 3P)+NO collisions. J Chem Phys 2021; 154:034303. [PMID: 33499610 DOI: 10.1063/5.0031199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A realistic double many-body expansion potential energy surface (PES) is developed for the 2A″ state of the carbon-nitrogen-oxygen (CNO) system based on MRCI-F12/cc-pVQZ-F12 ab initio energies. The new PES reproduces the fitted points with chemical accuracy (root mean square deviation up to 0.043 eV) and explicitly incorporates long range energy terms that can accurately describe the electrostatic and dispersion interactions. Thermal rate coefficients were computed for the C(3P) + NO(2Π) reaction for temperatures ranging from 15 K to 10 000 K, and the values are compared to previously reported results. The differences are rationalized, and the major importance of long range forces in predicting the rate coefficients for barrierless reactions is emphasized.
Collapse
Affiliation(s)
- M O Alves
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil
| | - C E M Gonçalves
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - J P Braga
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - V C Mota
- Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil
| | - A J C Varandas
- Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil
| | - B R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat Commun 2020; 11:5713. [PMID: 33177517 PMCID: PMC7658983 DOI: 10.1038/s41467-020-19497-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Combustion is a complex chemical system which involves thousands of chemical reactions and generates hundreds of molecular species and radicals during the process. In this work, a neural network-based molecular dynamics (MD) simulation is carried out to simulate the benchmark combustion of methane. During MD simulation, detailed reaction processes leading to the creation of specific molecular species including various intermediate radicals and the products are intimately revealed and characterized. Overall, a total of 798 different chemical reactions were recorded and some new chemical reaction pathways were discovered. We believe that the present work heralds the dawn of a new era in which neural network-based reactive MD simulation can be practically applied to simulating important complex reaction systems at ab initio level, which provides atomic-level understanding of chemical reaction processes as well as discovery of new reaction pathways at an unprecedented level of detail beyond what laboratory experiments could accomplish. Gaining insights into combustion processes is challenging due to the complex reactions involved. The present work proposes a neural network potential model trained to ab initio data that enables to simulate the combustion of methane by predicting reactants, products and reaction intermediates.
Collapse
|
20
|
Käser S, Koner D, Christensen AS, von Lilienfeld OA, Meuwly M. Machine Learning Models of Vibrating H2CO: Comparing Reproducing Kernels, FCHL, and PhysNet. J Phys Chem A 2020; 124:8853-8865. [DOI: 10.1021/acs.jpca.0c05979] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Anders S. Christensen
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - O. Anatole von Lilienfeld
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
Koner D, Meuwly M. Permutationally Invariant, Reproducing Kernel-Based Potential Energy Surfaces for Polyatomic Molecules: From Formaldehyde to Acetone. J Chem Theory Comput 2020; 16:5474-5484. [DOI: 10.1021/acs.jctc.0c00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Koner D, Schwilk M, Patra S, Bieske EJ, Meuwly M. N3+: Full-dimensional ground state potential energy surface, vibrational energy levels, and dynamics. J Chem Phys 2020; 153:044302. [DOI: 10.1063/5.0011957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Max Schwilk
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Sarbani Patra
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Evan J. Bieske
- Department of Chemistry, University of Melbourne, Parkville 3010, Australia
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Arnold J, Koner D, Käser S, Singh N, Bemish RJ, Meuwly M. Machine Learning for Observables: Reactant to Product State Distributions for Atom–Diatom Collisions. J Phys Chem A 2020; 124:7177-7190. [DOI: 10.1021/acs.jpca.0c05173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julian Arnold
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Narendra Singh
- Department of Mechanical Engineering, Stanford University Stanford, California 94305, United States
| | - Raymond J. Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, United States
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
24
|
Koner D, Salehi SM, Mondal P, Meuwly M. Non-conventional force fields for applications in spectroscopy and chemical
reaction dynamics. J Chem Phys 2020; 153:010901. [DOI: 10.1063/5.0009628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland
| | - Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland
| | - Padmabati Mondal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra
Pradesh, India
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel,
Switzerland and Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
25
|
Koner D, Bemish RJ, Meuwly M. Dynamics on Multiple Potential Energy Surfaces: Quantitative Studies of Elementary Processes Relevant to Hypersonics. J Phys Chem A 2020; 124:6255-6269. [DOI: 10.1021/acs.jpca.0c01870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Raymond J. Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, United States
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
26
|
Venturi S, Jaffe RL, Panesi M. Bayesian Machine Learning Approach to the Quantification of Uncertainties on Ab Initio Potential Energy Surfaces. J Phys Chem A 2020; 124:5129-5146. [DOI: 10.1021/acs.jpca.0c02395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S. Venturi
- University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - R. L. Jaffe
- NASA Ames Research Center, Moffett Field, California 94035-1000, United States
| | - M. Panesi
- University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Unke OT, Koner D, Patra S, Käser S, Meuwly M. High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab5922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
San Vicente Veliz JC, Koner D, Schwilk M, Bemish RJ, Meuwly M. The N(4S) + O2(X3Σ−g) ↔ O(3P) + NO(X2Π) reaction: thermal and vibrational relaxation rates for the 2A′, 4A′ and 2A′′ states. Phys Chem Chem Phys 2020; 22:3927-3939. [DOI: 10.1039/c9cp06085e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross sections, rates, equilibrium constants and vibrational relaxation times for the N(4S) + O2(X3Σ−g) ↔ O(3P) + NO(X2Π) reaction from simulations on new, RKHS-based surfaces for the three lowest electronic states.
Collapse
Affiliation(s)
| | - Debasish Koner
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Max Schwilk
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Raymond J. Bemish
- Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland AFB
- USA
| | - Markus Meuwly
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
29
|
Koner D, San Vicente Veliz JC, Bemish RJ, Meuwly M. Accurate reproducing kernel-based potential energy surfaces for the triplet ground states of N2O and dynamics for the N + NO ↔ O + N2 and N2 + O → 2N + O reactions. Phys Chem Chem Phys 2020; 22:18488-18498. [DOI: 10.1039/d0cp02509g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reproducing kernel-based potential energy surface based on MRCI+Q/aug-cc-pVTZ energies for the triplet states of N2O and quasiclassical dynamical study for the reaction, dissociation and vibrational relaxation.
Collapse
Affiliation(s)
- Debasish Koner
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | | | - Raymond J. Bemish
- Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland AFB
- USA
| | - Markus Meuwly
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
30
|
Sweeny BC, Pan H, Kassem A, Sawyer JC, Ard SG, Shuman NS, Viggiano AA, Brickel S, Unke OT, Upadhyay M, Meuwly M. Thermal activation of methane by MgO+: temperature dependent kinetics, reactive molecular dynamics simulations and statistical modeling. Phys Chem Chem Phys 2020; 22:8913-8923. [DOI: 10.1039/d0cp00668h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The kinetics methane activation (MgO+ + CH4) was studied experimentally and computationally by running and analyzing reactive atomistic simulations.
Collapse
Affiliation(s)
- Brendan C. Sweeny
- NRC Postdoc at Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Hanqing Pan
- USRA Space Scholar at Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Asmaa Kassem
- USRA Space Scholar at Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Jordan C. Sawyer
- NRC Postdoc at Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Shaun G. Ard
- Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Nicholas S. Shuman
- Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Albert A. Viggiano
- Air Force Research Laboratory
- Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | | | - Oliver T. Unke
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Meenu Upadhyay
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Markus Meuwly
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
31
|
Dörfler AD, Eberle P, Koner D, Tomza M, Meuwly M, Willitsch S. Long-range versus short-range effects in cold molecular ion-neutral collisions. Nat Commun 2019; 10:5429. [PMID: 31780657 PMCID: PMC6882903 DOI: 10.1038/s41467-019-13218-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
The investigation of cold interactions between ions and neutrals has recently emerged as a new scientific frontier at the interface of physics and chemistry. Here, we report a study of charge-transfer (CT) collisions of Rb atoms with N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ and O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ ions in the mK regime using a dynamic ion-neutral hybrid trapping experiment. We observe markedly different CT kinetics and dynamics for the different systems and reaction channels studied. While the kinetics in some channels are consistent with classical capture theory, others show distinct non-universal dynamics. The experimental results are interpreted with the help of classical-capture, quasiclassical-trajectory and quantum-scattering calculations using ab-initio potentials for the highly excited molecular states involved. The theoretical analysis reveals an intricate interplay between short- and long-range effects in the different reaction channels which ultimately determines the CT dynamics and rates. Our results illustrate salient mechanisms that determine the efficiency of cold molecular CT reactions. Studies on reactions between cold molecular ions and neutral atoms provide insights into intermolecular interactions. Here the authors explore the kinetics and dynamics of charge-transfer collisions between the cold N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ and O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ ions and neutral Rb atoms and discuss the role of long- and short-range effects.
Collapse
Affiliation(s)
- Alexander D Dörfler
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Pascal Eberle
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Michał Tomza
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| |
Collapse
|
32
|
Rivero U, Unke OT, Meuwly M, Willitsch S. Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations. J Chem Phys 2019; 151:104301. [DOI: 10.1063/1.5114981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Uxía Rivero
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Oliver T. Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
33
|
Alves MV, Gonçalves CEM, Braga JP, Mota VC, Varandas AJC, Galvão BRL. Quasiclassical Study of the C( 3P) + NO(X 2Π) and O( 3P) + CN(X 2Σ +) Collisional Processes on an Accurate DMBE Potential Energy Surface. J Phys Chem A 2019; 123:7195-7200. [PMID: 31356075 DOI: 10.1021/acs.jpca.9b03860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The predicted rate constants for C + NO and O + CN collisions in three potential energy surfaces (PESs) for the 2A' state of the CNO molecule are compared using quasiclassical trajectories. Different temperature dependencies are obtained for the C + NO reaction, which are explained in terms of the long-range properties of the PESs. Recommended values and mechanistic details are also reported. For O + CN collisions, a better agreement between the theoretical results is found, except for temperatures below 100 K.
Collapse
Affiliation(s)
- M V Alves
- Departamento de Química , Universidade Federal de Minas Gerais , 31270-901 , Belo Horizonte , Brazil
| | - C E M Gonçalves
- Departamento de Química , Universidade Federal de Minas Gerais , 31270-901 , Belo Horizonte , Brazil
| | - J P Braga
- Departamento de Química , Universidade Federal de Minas Gerais , 31270-901 , Belo Horizonte , Brazil
| | - V C Mota
- Departamento de Física , Universidade Federal do Espírito Santo , 29075-910 Vitória , Brazil
| | - A J C Varandas
- School of Physics and Physical Engineering , Qufu Normal University , 273165 Qufu , China.,Coimbra Chemistry Centre and Chemistry Department , University of Coimbra , 3004-535 Coimbra , Portugal
| | - B R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG , Av. Amazonas 5253 , 30421-169 Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
34
|
Kroupnov A, Pogosbekian M. Detailed mechanism of exchange reactions CO + N, CN + O and NO + C on the 4A″ potential energy surface at high temperature. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Koner D, Unke OT, Boe K, Bemish RJ, Meuwly M. Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation. J Chem Phys 2019; 150:211101. [DOI: 10.1063/1.5097385] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Oliver T. Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Kyle Boe
- Boston College, Institute for Scientific Research, Chestnut Hill, Massachusetts 02467, USA
| | - Raymond J. Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
36
|
Abstract
The diffusional dynamics of atomic oxygen in and on amorphous solid water (ASW) to form molecular oxygen is characterized. Reactive molecular dynamics simulations to study bond breaking and bond formation show that vibrational relaxation of the highly excited diatomic occurs on the 10 ns to 100 ns time scale. The relaxation process is highly nonexponential and can be characterized by a stretched exponential decay reminiscent of the dynamics of glasses. The stretched exponents range from β = 0.15 for relaxation on the surface to β = 0.21 for the dynamics in bulk. It is also found that coupling of the O2 relaxation to the internal water modes occurs which speeds up the vibrational relaxation by a factor of 4. Extrapolation of the stretched exponential decay to 1 μs yields a final vibrational quantum number v = 2 for O2(X3Σ-g), consistent with experimental results from photolysis of SO2 on ASW at 193 nm which find v ≤ 3. Desorption energies of water from the surface range from 1.5 to 2.0 kcal mol-1 compared with 1.8 kcal mol-1 found from experiment, depending on whether the water molecules are flexible or not.
Collapse
Affiliation(s)
- Marco Pezzella
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | | |
Collapse
|