• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640428)   Today's Articles (1841)   Subscriber (50387)
For: Uteva E, Graham RS, Wilkinson RD, Wheatley RJ. Active learning in Gaussian process interpolation of potential energy surfaces. J Chem Phys 2018;149:174114. [DOI: 10.1063/1.5051772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]  Open
Number Cited by Other Article(s)
1
Pan X, Snyder R, Wang JN, Lander C, Wickizer C, Van R, Chesney A, Xue Y, Mao Y, Mei Y, Pu J, Shao Y. Training machine learning potentials for reactive systems: A Colab tutorial on basic models. J Comput Chem 2024;45:638-647. [PMID: 38082539 PMCID: PMC10923003 DOI: 10.1002/jcc.27269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 01/18/2024]
2
Wang W, Liu X, Pérez-Ríos J. AlF-AlF Reaction Dynamics between 200 K and 1000 K: Reaction Mechanisms and Intermediate Complex Characterization. Molecules 2023;29:222. [PMID: 38202805 PMCID: PMC10780286 DOI: 10.3390/molecules29010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]  Open
3
Liu X, Wang W, Pérez-Ríos J. Molecular dynamics-driven global potential energy surfaces: Application to the AlF dimer. J Chem Phys 2023;159:144103. [PMID: 37811831 DOI: 10.1063/5.0169080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]  Open
4
Snyder R, Kim B, Pan X, Shao Y, Pu J. Bridging semiempirical and ab initio QM/MM potentials by Gaussian process regression and its sparse variants for free energy simulation. J Chem Phys 2023;159:054107. [PMID: 37530109 PMCID: PMC10400118 DOI: 10.1063/5.0156327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]  Open
5
Broad J, Wheatley RJ, Graham RS. Parallel Implementation of Nonadditive Gaussian Process Potentials for Monte Carlo Simulations. J Chem Theory Comput 2023. [PMID: 37368843 DOI: 10.1021/acs.jctc.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
6
Yang Z, Chen H, Buren B, Chen M. Globally Accurate Gaussian Process Potential Energy Surface and Quantum Dynamics Studies on the Li(2S) + Na2 → LiNa + Na Reaction at Low Collision Energies. Molecules 2023;28:2938. [PMID: 37049701 PMCID: PMC10096016 DOI: 10.3390/molecules28072938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]  Open
7
Low K, Coote ML, Izgorodina EI. Accurate Prediction of Three-Body Intermolecular Interactions via Electron Deformation Density-Based Machine Learning. J Chem Theory Comput 2023;19:1466-1475. [PMID: 36787280 DOI: 10.1021/acs.jctc.2c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
8
Fang X, Gu M, Wu J. Reliable emulation of complex functionals by active learning with error control. J Chem Phys 2022;157:214109. [PMID: 36511540 DOI: 10.1063/5.0121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
9
Hajibabaei A, Umer M, Anand R, Ha M, Kim KS. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022;34:344007. [PMID: 35675808 DOI: 10.1088/1361-648x/ac76ff] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
10
Graham RS, Wheatley RJ. Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions. Chem Commun (Camb) 2022;58:6898-6901. [PMID: 35642644 DOI: 10.1039/d2cc01820a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Fujioka K, Sun R. Interpolating Moving Ridge Regression (IMRR): A machine learning algorithm to predict energy gradients for ab initio molecular dynamics simulations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
12
Gaussian Process Regression and Machine Learning Methods for Carbon-Based Material Adsorption. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3901608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
13
Yang Z, Chen H, Chen M. Representing Globally Accurate Reactive Potential Energy Surfaces with Complex Topography by Combining Gaussian Process Regression and Neural Network. Phys Chem Chem Phys 2022;24:12827-12836. [DOI: 10.1039/d2cp00719c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Broad J, Preston S, Wheatley RJ, Graham RS. Gaussian process models of potential energy surfaces with boundary optimization. J Chem Phys 2021;155:144106. [PMID: 34654292 DOI: 10.1063/5.0063534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
Saleh Y, Sanjay V, Iske A, Yachmenev A, Küpper J. Active learning of potential-energy surfaces of weakly bound complexes with regression-tree ensembles. J Chem Phys 2021;155:144109. [PMID: 34654290 DOI: 10.1063/5.0057051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
16
Liu Q, Liu L, An F, Huang J, Zhou Y, Xie D. A full-dimensional ab initio intermolecular potential energy surface and rovibrational spectra for OC-HF and OC-DF. J Chem Phys 2021;155:084302. [PMID: 34470366 DOI: 10.1063/5.0061291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
17
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021;121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
18
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021. [PMID: 33211478 DOI: 10.1021/acs.chemrev.1020c00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
19
Lin Q, Zhang L, Zhang Y, Jiang B. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials. J Chem Theory Comput 2021;17:2691-2701. [PMID: 33904718 DOI: 10.1021/acs.jctc.1c00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
20
Quintas-Sánchez E, Dawes R. Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials. Annu Rev Phys Chem 2021;72:399-421. [PMID: 33503385 DOI: 10.1146/annurev-physchem-090519-051837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Liu Y, Song H, Li J. Kinetic study of the OH + HO2 → H2O + O2 reaction using ring polymer molecular dynamics and quantum dynamics. Phys Chem Chem Phys 2020;22:23657-23664. [PMID: 33112305 DOI: 10.1039/d0cp04120c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Jiang B, Li J, Guo H. High-Fidelity Potential Energy Surfaces for Gas-Phase and Gas-Surface Scattering Processes from Machine Learning. J Phys Chem Lett 2020;11:5120-5131. [PMID: 32517472 DOI: 10.1021/acs.jpclett.0c00989] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
23
Venturi S, Jaffe RL, Panesi M. Bayesian Machine Learning Approach to the Quantification of Uncertainties on Ab Initio Potential Energy Surfaces. J Phys Chem A 2020;124:5129-5146. [DOI: 10.1021/acs.jpca.0c02395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
24
Lomaka A, Tamm T. Linearization of moment tensor potentials for multicomponent systems with a preliminary assessment for short-range interaction energy in water dimer and trimer. J Chem Phys 2020;152:164115. [DOI: 10.1063/5.0007473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
25
Lin Q, Zhang Y, Zhao B, Jiang B. Automatically growing global reactive neural network potential energy surfaces: A trajectory-free active learning strategy. J Chem Phys 2020;152:154104. [DOI: 10.1063/5.0004944] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
26
Song Q, Zhang Q, Meng Q. Revisiting the Gaussian process regression for fitting high-dimensional potential energy surface and its application to the OH + HO2→O2+ H2O reaction. J Chem Phys 2020;152:134309. [PMID: 32268765 DOI: 10.1063/1.5143544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
27
Dral PO. Quantum Chemistry in the Age of Machine Learning. J Phys Chem Lett 2020;11:2336-2347. [PMID: 32125858 DOI: 10.1021/acs.jpclett.9b03664] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
28
Dral PO. Quantum chemistry assisted by machine learning. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
29
Lu Z, Yadav S, Singh CV. Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02070e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Krems RV. Bayesian machine learning for quantum molecular dynamics. Phys Chem Chem Phys 2019;21:13392-13410. [DOI: 10.1039/c9cp01883b] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA