Smirnova YG, Müller M. How does curvature affect the free-energy barrier of stalk formation? Small vesicles vs apposing, planar membranes.
EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021;
50:253-264. [PMID:
33547940 PMCID:
PMC8071802 DOI:
10.1007/s00249-020-01494-1]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022]
Abstract
Using molecular simulations of POPC lipids in conjunction with the calculation of the Minimum Free-Energy Path (MFEP), we study the effect of strong membrane curvature on the formation of the first fusion intermediate-the stalk between a vesicle and its periodic image. We find that the thermodynamic stability of this hourglass-shaped, hydrophobic connection between two vesicles is largely increased by the strong curvature of small vesicles, whereas the intrinsic barrier to form a stalk, i.e., associated with dimple formation and lipid tails protrusions, is similar to the case of two, apposing, planar membranes. A significant reduction of the barrier of stalk formation, however, stems from the lower dehydration free energy that is required to bring highly curved vesicle into a distance, at which stalk formation may occur, compared to the case of apposing, planar membranes.
Collapse