1
|
Pritchard FG, Jordan CJC, Verlet JRR. Probing photochemical dynamics using electronic vs vibrational sum-frequency spectroscopy: The case of the hydrated electron at the water/air interface. J Chem Phys 2024; 161:170901. [PMID: 39484892 DOI: 10.1063/5.0235875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Photo-dynamics can proceed differently at the water/air interface compared to in the respective bulk phases. Second-order non-linear spectroscopy is capable of selectively probing the dynamics of species in such an environment. However, certain conclusions drawn from vibrational and electronic sum-frequency generation spectroscopies do not agree as is the case for the formation and structure of hydrated electrons at the interface. This Perspective aims to highlight these apparent discrepancies, how they can be reconciled, suggests how the two techniques complement one another, and outline the value of performing both techniques on the same system.
Collapse
Affiliation(s)
- Faith G Pritchard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Caleb J C Jordan
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Huang-Fu ZC, Qian Y, Zhang T, Brown JB, Rao Y. Development of phase-cycling interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy. J Chem Phys 2024; 161:114201. [PMID: 39291691 DOI: 10.1063/5.0227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump-probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
3
|
Jing Y, Liang K, Muir NS, Zhou H, Li Z, Palasz JM, Sorbie J, Wang C, Cushing SK, Kubiak CP, Sofer Z, Li S, Xiong W. Ultrafast Formation of Charge Transfer Trions at Molecular-Functionalized 2D MoS 2 Interfaces. Angew Chem Int Ed Engl 2024; 63:e202405123. [PMID: 38714495 DOI: 10.1002/anie.202405123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.
Collapse
Affiliation(s)
- Yuancheng Jing
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Kangkai Liang
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Nicole S Muir
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Hao Zhou
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Zhehao Li
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Jonathan Sorbie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Chenglai Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 127-72, Pasadena, California, 91125, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| |
Collapse
|
4
|
Huang-Fu ZC, Tkachenko NV, Qian Y, Zhang T, Brown JB, Harutyunyan A, Chen G, Rao Y. Conical Intersections at Interfaces Revealed by Phase-Cycling Interface-Specific Two-Dimensional Electronic Spectroscopy (i2D-ES). J Am Chem Soc 2024. [PMID: 39037260 DOI: 10.1021/jacs.4c06035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Conical intersections (CIs) hold significant stake in manipulating and controlling photochemical reaction pathways of molecules at interfaces and surfaces by affecting molecular dynamics therein. Currently, there is no tool for characterizing CIs at interfaces and surfaces. To this end, we have developed phase-cycling interface-specific two-dimensional electronic spectroscopy (i2D-ES) and combined it with advanced computational modeling to explore nonadiabatic CI dynamics of molecules at the air/water interface. Specifically, we integrated the phase locked pump pulse pair with an interface-specific electronic probe to obtain the two-dimensional interface-specific responses. We demonstrate that the nonadiabatic transitions of an interface-active azo dye molecule that occur through the CIs at the interface have different kinetic pathways from those in the bulk water. Upon photoexcitation, two CIs are present: one from an intersection of an optically active S2 state with a dark S1 state and the other from the intersection of the progressed S1 with the ground state S0. We find that the molecular conformations in the ground state are different for interfacial molecules. The interfacial molecules are intimately correlated with the locally populated excited state S2 being farther away from the CI region. This leads to slower nonadiabatic dynamics at the interface than in bulk water. Moreover, we show that the nonadiabatic transition from the S1 dark state to the ground state is significantly longer at the interface than that in the bulk, which is likely due to the orientationally restricted configuration of the excited state at the interface. Our findings suggest that orientational configurations of molecules manipulate reaction pathways at interfaces and surfaces.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nikolay V Tkachenko
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Avetik Harutyunyan
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Gugang Chen
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
5
|
Zhang YQ, Yang CC, Ma JY, Tian WQ. The enhancement of nonlinear optical properties of azulene-based nanographene by N atoms: a finishing touch. Chem Sci 2024; 15:2100-2111. [PMID: 38332838 PMCID: PMC10848778 DOI: 10.1039/d3sc04443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
Nonlinear optical (NLO) materials play an increasingly important role in optoelectronic devices, biomedicine, micro-nano processing, and other fields. The development of organic materials with strong second or (and) third NLO properties and a high stability is still challenging due to the unknown strategies for obtaining enhanced high order NLO properties. In the present work, π-conjugated systems are constructed by doping boron or (and) nitrogen atoms in the azulene moiety of azulene-based nanographenes (formed with an azulene chain with two bridging HCCHs at the two sides of the connecting CC bonds between azulenes, A1A2A3), and the NLO properties are predicted with time-dependent density functional theory based methods and a sum-over-states model. The doping of heteroatoms induces charge redistribution, tunes the frontier molecular orbital energy gap, changes the composition of some frontier molecular orbitals, and affects the NLO properties of those nanographenes. Among the designed nanographenes, the azulene-based nanographene with two nitrogen atoms at the two ends has the largest static first hyperpolarizability (91.30 × 10-30 esu per heavy atom), and the further introduction of two N atoms at the two ends of the central azulene moiety of this nanographene results in a large static second hyperpolarizability while keeping the large static first hyperpolarizability.
Collapse
Affiliation(s)
- Ya Qing Zhang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
| | - Cui-Cui Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
- College of Science, Chongqing University of Technology Huaxi Campus Chongqing 400054 P. R. China
| | - Jia-Ying Ma
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
| |
Collapse
|
6
|
Yang CC, Su X, Zheng QZ, Chen J, Tian WQ, Li WQ, Yang L. The search for a maximum of the D-π-A paradigm for second order nonlinear optical molecular materials. Phys Chem Chem Phys 2023; 25:31481-31492. [PMID: 37962477 DOI: 10.1039/d3cp03756h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Push-pull π-conjugated molecules are one of the paradigms of second order nonlinear optical (NLO) materials and have been extensively explored. However, high-performance second order NLO materials with an optimum electron donor (D), π-bridge (π) and acceptor (A) under this paradigm are still the most sought-after. In the present work, D-π-A molecules with optimal D, π and A combination for strong second order NLO properties are proposed based on molecular orbital theories. The optimal D-π-A push-pull molecule achieves an unprecedentedly strong NLO response under the D-π-A paradigm, i.e., the static first hyperpolarizability reaches -453.92 × 10-30 esu per heavy atom using azulene as part of the π-bridge and acceptor to synergistically reinforce the strength of the acceptor. The protocols of D-π-A NLO molecule design through frontier molecular orbital matching of D, π and A with optimal combination of electron donating and accepting strengths shed light on future molecular NLO materials exploration. The simulated two-dimensional second order spectra provide useful information (e.g., sum frequency generation) on the applications of those D-π-A push-pull molecules in nonlinear optics.
Collapse
Affiliation(s)
- Cui-Cui Yang
- College of Science, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Xiao Su
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Qi-Zheng Zheng
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Jiu Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Wei-Qi Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China.
- Technology Innovation Center of Materials and Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325001, China.
| |
Collapse
|
7
|
Yang CC, Tian WQ. Electronic Structure Modulation of Nanographenes for Second Order Nonlinear Optical Molecular Materials. Chempluschem 2023; 88:e202300279. [PMID: 37515505 DOI: 10.1002/cplu.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Nanographenes (NGs) have drawn extensive attention as promising candidates for next-generation optoelectronic and nonlinear optical (NLO) materials, owing to its unique optoelectronic properties and high thermal stability. However, the weak polarity or even non-polarity of NGs (resulting in weak even order NLO properties) and the high chemical reactivity of zigzag edged NGs hinder their further applications in nonlinear optics, thus stabilization (lowering the chemical reactivity) and polarizing the charge distribution in NGs are necessary for such applications of NGs. The fusion of heptagon and pentagon endows the azulene with the character of donor-acceptor, and the B=N unit is isoelectronic to C=C unit. The introduction of polar azulene and BN are idea to polarize and stabilize the electronic structure of NGs for NLO applications. In the present review, a survey on the functionalization and applications of NGs in nonlinear optics is conducted. The engineering of the electronic structure of NGs by topological defects, doping and edge modulation is summarized. Finally, a summary of challenges and perspectives for carbon-based NLO nanomaterials is presented.
Collapse
Affiliation(s)
- Cui-Cui Yang
- College of Science, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan, Chongqing, 400054, P. R. China
- College of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Wei Quan Tian
- College of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| |
Collapse
|
8
|
Brown JB, Qian Y, Huang-Fu ZC, Zhang T, Wang H, Rao Y. In Situ Probing of the Surface Properties of Droplets in the Air. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37497860 DOI: 10.1021/acs.langmuir.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Surface properties of nanodroplets and microdroplets are intertwined with their immense applicability in biology, medicine, production, catalysis, the environment, and the atmosphere. However, many means for analyzing droplets and their surfaces are destructive, non-interface-specific, not conducted under ambient conditions, require sample substrates, conducted ex situ, or a combination thereof. For these reasons, a technique for surface-selective in situ analyses under any condition is necessary. This feature article presents recent developments in second-order nonlinear optical scattering techniques for the in situ interfacial analysis of aerosol droplets in the air. First, we describe the abundant utilization of such droplets across industries and how their unique surface properties lead to their ubiquitous usage. Then, we describe the fundamental properties of droplets and their surfaces followed by common methods for their study. We next describe the fundamental principles of sum-frequency generation (SFG) spectroscopy, the Langmuir adsorption model, and how they are used together to describe adsorption processes at planar liquid and droplet surfaces. We also discuss the history of developments of second-order scattering from droplets suspended in dispersive media and introduce second-harmonic scattering (SHS) and sum-frequency scattering (SFS) spectroscopies. We then go on to outline the developments of SHS, electronic sum-frequency scattering (ESFS), and vibrational sum-frequency scattering (VSFS) from droplets in the air and discuss the fundamental insights about droplet surfaces that the techniques have provided. Finally, we describe some of the areas of nonlinear scattering from airborne droplets which need improvement as well as potential future directions and utilizations of SHS, ESFS, and VSFS throughout environmental systems, interfacial chemistry, and fundamental physics. The goal of this feature article is to spread knowledge about droplets and their unique surface properties as well as introduce second-order nonlinear scattering to a broad audience who may be unaware of recent progress and advancements in their applicability.
Collapse
Affiliation(s)
- Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Wang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
9
|
Huang-Fu ZC, Qian Y, Zhang T, Deng GH, Brown JB, Fisher H, Schmidt S, Chen H, Rao Y. Orientational Coupling of Molecules at Interfaces Revealed by Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG). JACS AU 2023; 3:1413-1423. [PMID: 37234121 PMCID: PMC10206597 DOI: 10.1021/jacsau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Photoinduced relaxation processes at interfaces are intimately related to many fields such as solar energy conversion, photocatalysis, and photosynthesis. Vibronic coupling plays a key role in the fundamental steps of the interface-related photoinduced relaxation processes. Vibronic coupling at interfaces is expected to be different from that in bulk due to the unique environment. However, vibronic coupling at interfaces has not been well understood due to the lack of experimental tools. We have recently developed a two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) for vibronic coupling at interfaces. In this work, we present orientational correlations in vibronic couplings of electronic and vibrational transition dipoles as well as the structural evolution of photoinduced excited states of molecules at interfaces with the 2D-EVSFG technique. We used malachite green molecules at the air/water interface as an example, to be compared with those in bulk revealed by 2D-EV. Together with polarized VSFG and ESHG experiments, polarized 2D-EVSFG spectra were used to extract relative orientations of an electronic transition dipole and vibrational transition dipoles at the interface. Combined with molecular dynamics calculations, time-dependent 2D-EVSFG data have demonstrated that structural evolutions of photoinduced excited states at the interface have different behaviors than those in bulk. Our results showed that photoexcitation leads to intramolecular charge transfer but no conical interactions in 25 ps. Restricted environment and orientational orderings of molecules at the interface are responsible for the unique features of vibronic coupling.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Gang-Hua Deng
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Jesse B. Brown
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Haley Fisher
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Sydney Schmidt
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, The University
of Texas at Austin, Austin, Texas 78758, United States
| | - Yi Rao
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| |
Collapse
|
10
|
Yang CC, Ye J, Quan Tian W, Li WQ, Yang L. Butterfly-Shaped Nanographenes with Excellent Second-Order Nonlinear Optical Properties: The Synergy of B/N and Azulene. Chemistry 2023; 29:e202203110. [PMID: 36305483 DOI: 10.1002/chem.202203110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Azulene, a simple polar polycyclic aromatic hydrocarbon with connected electron donor and acceptor (DA), ignites the hope of designing second-order nonlinear optical (NLO) molecular materials from pure nonpolar carbon nanomaterials. In this work, a butterfly-shaped nanographene (π-DA-π) was designed by incorporating azulene between two coronenes. One more electron in a N atom or one electron fewer in a B atom with respect to a C atom can polarize charge distribution in carbon nanomaterials, and further doping of B and N in the designed butterfly-shaped nanographene changes the system from π-DA-π to D-π-A, leading to strong NLO responses. For example, the largest static first hyperpolarizability even reaches 173.89×10-30 esu per heavy atom. The synergetic role of B, N and azulene in the nanographene is scrutinized, and such a doping strategy is found to provide an effective means for the design of carbon-based functional materials. The strong second-order NLO responses of these butterfly-shaped carbon-based nanographenes under external fields, for example, sum frequency generation and difference frequency generation, could inspire future experimental exploration.
Collapse
Affiliation(s)
- Cui-Cui Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, 401331, Chongqing, P. R. China
| | - Jing Ye
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, 401331, Chongqing, P. R. China
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, 401331, Chongqing, P. R. China
| | - Wei-Qi Li
- School of Physics, Harbin Institute of Technology, 150001, Harbin, P. R. China.,Technology Innovation Center of Materials and, Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, 150001, Harbin, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, P. R. China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, 325001, Wenzhou, P. R. China
| |
Collapse
|
11
|
Wagner J, Wu Z, Wang H, Xiong W. Imaging Orientation of a Single Molecular Hierarchical Self-Assembled Sheet: The Combined Power of a Vibrational Sum Frequency Generation Microscopy and Neural Network. J Phys Chem B 2022; 126:7192-7201. [PMID: 36098975 PMCID: PMC9511492 DOI: 10.1021/acs.jpcb.2c05876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Indexed: 11/28/2022]
Abstract
In this work, we determined the tilt angles of molecular units in hierarchical self-assembled materials on a single-sheet level, which were not available previously. This was achieved by developing a fast line-scanning vibrational sum frequency generation (VSFG) hyperspectral imaging technique in combination with neural network analysis. Rapid VSFG imaging enabled polarization resolved images on a single sheet level to be measured quickly, circumventing technical challenges due to long-term optical instability. The polarization resolved hyperspectral images were then used to extract the supramolecular tilt angle of a self-assembly through a set of spectra-tilt angle relationships which were solved through neural network analysis. This unique combination of both novel techniques offers a new pathway to resolve molecular level structural information on self-assembled materials. Understanding these properties can further drive self-assembly design from a bottom-up approach for applications in biomimetic and drug delivery research.
Collapse
Affiliation(s)
- Jackson
C. Wagner
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Zishan Wu
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Haoyuan Wang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Yang CC, Zheng XL, Chen J, Tian WQ, Li WQ, Yang L. Spin engineering of triangulenes and application for nano nonlinear optical materials design. Phys Chem Chem Phys 2022; 24:18529-18542. [PMID: 35899847 DOI: 10.1039/d2cp02915d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently synthesized triangulenes with non-bonding edge states could have broad potential applications in magnetics, spintronics and electro-optics if they have appropriate electronic structure modulation. In the present work, strategies based on molecular orbital theory through heteroatom doping are proposed to redistribute, reduce or eliminate the spin of triangulenes for novel functional materials design, and the role of B, N, NBN, and BNB in such intended electronic structure manipulation is scrutinized. π-Extended triangulenes with tunable electronic properties could be potential nonlinear optical (NLO) materials with appropriate inhibition of their polyradical nature. The elimination of spin is achieved by B, N, NBN, and BNB doping with the intended geometric arrangement for enhanced polarity. Intended doping of BNB results in an optimal structure with large static first hyperpolarizability (〈β0〉) as well as strong Hyper-Rayleigh scattering (HRS) βHRS(-2ω; ω, ω) (ω = 1064.0 nm), TG7-BNB-ba with a large 〈β0〉 (18.85 × 10-30 esu per heavy atom) and βHRS (1.15 × 10-28 esu per heavy atom) much larger than that of a synthesized triangular molecule (1.12 × 10-30 esu of 〈β0〉 per heavy atom and 5.04 × 10-30 esu of βHRS per heavy atom). The strong second order NLO responses in the near-infrared and visible regions, particularly the strong sum frequency generation, make these B or (and) N doped triangulenes promising candidates for the fabrication of novel carbon-based optoelectronic devices and micro-NLO devices.
Collapse
Affiliation(s)
- Cui-Cui Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Xue-Lian Zheng
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Jiu Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Wei-Qi Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China.,Technology Innovation Center of Materials and Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325001, China.
| |
Collapse
|
13
|
Wang H, Hu XH, Wang HF. Temporal and Chirp Effects of Laser Pulses on the Spectral Lineshape in Sum-Frequency Generation Vibrational Spectroscopy. J Chem Phys 2022; 156:204706. [DOI: 10.1063/5.0088506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Assignment and interpretation of the sum-frequency generation vibrational spectra (SFG-VS) depend on the ability to measure and understand the factors affecting the SFG-VS spectral lineshape accurately and reliably. In the past, the formulation of the polarization selection rules for SFG-VS and the development of the sub-wavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) have provided solutions for many of these needs. However, despite these advantages, HR-BB-SFG-VS has not been widely adopted. The majority of SFG measurements so far still relies on the picosecond scanning SFG-VS (ps-SFG-VS) or the conventional broadband SFG-VS (BB-SFG-VS) with the spectral resolution around (mostly above) 10 cm-1, which also results in less ideal spectral lineshape in the SFG spectra due to the temporal and chirp effects of the laser pulses used in experiment. In this report, the temporal and the chirp effects of laser pulses with different profiles in the SFG experiment on the measured SFG-VS spectral lineshape are examined through spectral simulation. In addition, the experimental data of a classical model system, i.e., OTS (octadecyltrichlorosilane) monolayer on glass, obtained from the ps-SFG-VS, the BB-SFG-VS, and the HR-BB-SFG-VS measurements, are directly compared and examined. These results show that temporal and chirp effects are often significant in the conventional BB-SFG-VS, resulting lineshape distortions and peak position shifts besides spectral broadening. Such temporal and chirp effects are less significant in the ps scanning SFG-VS. For the HR-BB-SFG-VS, spectral broadening, and temporal and chirp effects are insignificant, making HR-BB-SFG-VS the choice for accurate and reliable measurement and analysis of SFG-VS spectra.
Collapse
|
14
|
Cotton DE, Roberts ST. Sensitivity of sum frequency generation experimental conditions to thin film interference effects. J Chem Phys 2021; 154:114704. [PMID: 33752341 DOI: 10.1063/5.0039897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sum-frequency generation (SFG) spectroscopy has furthered our understanding of the chemical interfaces that guide key processes in biology, catalysis, environmental science, and energy conversion. However, interpreting SFG spectra of systems containing several internal interfaces, such as thin film electronics, electrochemical cells, and biofilms, is challenging as different interfaces within these structures can produce interfering SFG signals. One potential way to address this issue is to carefully select experimental conditions that amplify the SFG signal of an interface of interest over all others. In this report, we investigate a model two-interface system to assess our ability to isolate the SFG signal from each interface. For SFG experiments performed in a reflective geometry, we find that there are few experimental conditions under which the SFG signal originating from either interface can be amplified and isolated from the other. However, by performing several measurements under conditions that alter their interference, we find that we can reconstruct each signal even in cases where the SFG signal from one interface is more than an order of magnitude smaller than its counterpart. The number of spectra needed for this reconstruction varies depending on the signal-to-noise level of the SFG dataset and the degree to which different experiments in a dataset vary in their sensitivity to each interface. Taken together, our work provides general guidelines for designing experimental protocols that can isolate SFG signals stemming from a particular region of interest within complex samples.
Collapse
Affiliation(s)
- Daniel E Cotton
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
15
|
Deng GH, Wei Q, Qian Y, Zhang T, Leng X, Rao Y. Development of interface-/surface-specific two-dimensional electronic spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023104. [PMID: 33648131 DOI: 10.1063/5.0019564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Structures, kinetics, and chemical reactivities at interfaces and surfaces are key to understanding many of the fundamental scientific problems related to chemical, material, biological, and physical systems. These steady-state and dynamical properties at interfaces and surfaces require even-order techniques with time-resolution and spectral-resolution. Here, we develop fourth-order interface-/surface-specific two-dimensional electronic spectroscopy, including both two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy and two-dimensional electronic second harmonic generation (2D-ESHG) spectroscopy, for structural and dynamics studies of interfaces and surfaces. The 2D-ESFG and 2D-ESHG techniques were based on a unique laser source of broadband short-wave IR from 1200 nm to 2200 nm from a home-built optical parametric amplifier. With the broadband short-wave IR source, surface spectra cover most of the visible light region from 480 nm to 760 nm. A translating wedge-based identical pulses encoding system (TWINs) was introduced to generate a phase-locked pulse pair for coherent excitation in the 2D-ESFG and 2D-ESHG. As an example, we demonstrated surface dark states and their interactions of the surface states at p-type GaAs (001) surfaces with the 2D-ESFG and 2D-ESHG techniques. These newly developed time-resolved and interface-/surface-specific 2D spectroscopies would bring new information for structure and dynamics at interfaces and surfaces in the fields of the environment, materials, catalysis, and biology.
Collapse
Affiliation(s)
- Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Qianshun Wei
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Xuan Leng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
16
|
Blake MJ, Colon BA, Calhoun TR. Leaving the Limits of Linearity for Light Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:24555-24565. [PMID: 34306294 PMCID: PMC8301257 DOI: 10.1021/acs.jpcc.0c07501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonlinear microscopy has enabled additional modalities for chemical contrast, deep penetration into biological tissues, and the ability to collect dynamics on ultrafast timescales across heterogenous samples. The additional light fields introduced to a sample offer seemingly endless possibilities for variation to optimize and customize experimentation and the extraction of physical insight. This perspective highlights three areas of growth in this diverse field: the collection of information across multiple timescales, the selective imaging of interfacial chemistry, and the exploitation of quantum behavior for future imaging directions. Future innovations will leverage the work of the studies reviewed here as well as address the current challenges presented.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Brandon A Colon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
17
|
Qian Y, Deng GH, Rao Y. In Situ Spectroscopic Probing of Polarity and Molecular Configuration at Aerosol Particle Surfaces. J Phys Chem Lett 2020; 11:6763-6771. [PMID: 32787224 DOI: 10.1021/acs.jpclett.0c02013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growth of aerosol particles in the atmosphere is related to chemical reactions in the gas and particle phases and at aerosol particle surfaces. While research regarding the gas and particle phases of aerosols is well-documented, physical properties and chemical reactivities at aerosol particle surfaces have not been studied extensively but have long been recognized. In particular, in situ measurements of aerosol particle surfaces are just emerging. The main reason is a lack of suitable surface-specific analytical techniques for direct measurements of aerosol particles under ambient conditions. Here we develop in situ surface-specific electronic sum frequency scattering (ESFS) to directly identify spectroscopic behaviors of molecules at aerosol particle surfaces. As an example, we applied an ESFS probe, malachite green (MG). We examined electronic spectra of MG at aerosol particle surfaces and found that the polarity of the surfaces is less polar than that in bulk. Our quantitative orientational analysis shows that MG is orientated with a polar angle of 25°-35° at the spherical particle surfaces of aerosols. The adsorption free energy of MG at the aerosol surfaces was found to be -20.75 ± 0.32 kJ/mol, which is much lower than that at the air/water interface. These results provide new insights into aerosol particle surfaces for further understanding the formation of secondary organic aerosols in the atmosphere.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
18
|
Comparing vibrational sum frequency generation responses at fused silica and fluorite/liquid ethanol interfaces. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Williams T, Walsh C, Murray K, Subir M. Interactions of emerging contaminants with model colloidal microplastics, C 60 fullerene, and natural organic matter - effect of surface functional group and adsorbate properties. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1190-1200. [PMID: 32250376 DOI: 10.1039/d0em00026d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface adsorption of two commonly detected emerging contaminants, amlodipine (AMP) and carbamazepine (CBZ), onto model colloidal microplastics, natural organic matter (NOM), and fullerene nanomaterials have been investigated. It is found that AMP accumulation at these colloidal-aqueous interfaces is markedly higher than that of CBZ. Measurements of surface excess and particle zeta potential, along with pH-dependent adsorption studies, reveal a distinct influence of colloidal functional group on the adsorption properties of these pharmaceuticals. AMP shows a clear preference for a surface containing carboxylic group compared to an amine modified surface. CBZ, in contrast, exhibit a pH-dependent surface proclivity for both of these microparticles. The type of interactions and molecular differences with respect to structural rigidity and charge properties explain these observed behaviors. In this work, we also demonstrate a facile approach in fabricating uniform microspheres coated with NOM and C60 nanoclusters. Subsequent binding studies on these surfaces show considerable adsorption on the NOM surface but a minimal uptake of CBZ by C60. Adsorption induced colloidal aggregation was not observed. These findings map out the extent of contaminant removal by colloids of different surface properties available in the aquatic environment. The methodology developed for the adsorption study also opens up the possibility for further investigations into colloidal-contaminant interactions.
Collapse
|
20
|
Deng GH, Qian Y, Wei Q, Zhang T, Rao Y. Interface-Specific Two-Dimensional Electronic Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2020; 11:1738-1745. [PMID: 32045523 DOI: 10.1021/acs.jpclett.0c00157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High even-order surface/interface specific spectroscopy has the potential to provide more structural and dynamical information about surfaces and interfaces. In this work, we developed a novel fourth-order interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) for structures and dynamics at surfaces and interfaces. A translating wedge-based identical pulses encoding system (TWINs) was introduced to generate phase-locked pulse pairs for coherent pump beams in 2D-ESFG. As a proof-of-principle experiment, fourth-order 2D-ESFG spectroscopy was used to demonstrate couplings of surface states for both n-type and p-type GaAs (100). We found surface dark state within the bandgap of the GaAs in 2D-ESFG spectra, which could not be observed in one-dimensional ESFG spectra. To our best knowledge, this is a first demonstration of interface-specific two-dimensional electronic spectroscopy. The development of the 2D-ESFG spectroscopy will provide new structural probes of spectral diffusion, conformational dynamics, energy transfer, and charge transfer for surfaces and interfaces.
Collapse
Affiliation(s)
- Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Qianshun Wei
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
21
|
Benderskii A, Morita A. Nonlinear spectroscopy and interfacial structure and dynamics. J Chem Phys 2019; 151:150401. [PMID: 31640380 DOI: 10.1063/1.5129103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Benderskii
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Watson BR, Doughty B, Calhoun TR. Energetics at the Surface: Direct Optical Mapping of Core and Surface Electronic Structure in CdSe Quantum Dots Using Broadband Electronic Sum Frequency Generation Microspectroscopy. NANO LETTERS 2019; 19:6157-6165. [PMID: 31368312 DOI: 10.1021/acs.nanolett.9b02201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding and controlling the electronic structure of nanomaterials is the key to tailoring their use in a wide range of practical applications. Despite this need, many important electronic states are invisible to conventional optical measurements and are typically identified indirectly based on their inferred impact on luminescence properties. This is especially common and important in the study of nanomaterial surfaces and their associated defects. Surface trap states play a crucial role in photophysical processes yet remain remarkably poorly understood. Here we demonstrate for the first time that broadband electronic sum frequency generation (eSFG) microspectroscopy can directly map the optically bright and dark states of nanoparticles, including the elusive below gap states. This new approach is applied to model cadmium selenide (CdSe) quantum dots (QDs), where the energies of surface trap states have eluded direct optical characterization for decades. Our eSFG measurements show clear signatures of electronic transitions both above the band gap, which we assign to previously reported one- and two-photon transitions associated with the CdSe core, as well as broad spectral signatures below the band gap that are attributed to surface states. In addition to the core states, this analysis reveals two distinct distributions of below gap states, providing the first direct optical measurement of both shallow and deep surface states on this system. Finally, chemical modification of the surfaces via oxidation results in the relative increase in the signals originating from the surface states. Overall, our eSFG experiments provide an avenue to directly map the entirety of the QD core and surface electronic structure, which is expected to open up opportunities to study how these materials are grown in situ and how surface states can be controlled to tune functionality.
Collapse
Affiliation(s)
- Brianna R Watson
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Benjamin Doughty
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Tessa R Calhoun
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|