1
|
Klippenstein V, Wolf N, van der Vegt NFA. A Gauss-Newton method for iterative optimization of memory kernels for generalized Langevin thermostats in coarse-grained molecular dynamics simulations. J Chem Phys 2024; 160:204115. [PMID: 38804493 DOI: 10.1063/5.0203832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
In molecular dynamics simulations, dynamically consistent coarse-grained (CG) models commonly use stochastic thermostats to model friction and fluctuations that are lost in a CG description. While Markovian, i.e., time-local, formulations of such thermostats allow for an accurate representation of diffusivities/long-time dynamics, a correct description of the dynamics on all time scales generally requires non-Markovian, i.e., non-time-local, thermostats. These thermostats typically take the form of a Generalized Langevin Equation (GLE) determined by a memory kernel. In this work, we use a Markovian embedded formulation of a position-independent GLE thermostat acting independently on each CG degree of freedom. Extracting the memory kernel of this CG model from atomistic reference data requires several approximations. Therefore, this task is best understood as an inverse problem. While our recently proposed approximate Newton scheme allows for the iterative optimization of memory kernels (IOMK), Markovian embedding remained potentially error-prone and computationally expensive. In this work, we present an IOMK-Gauss-Newton scheme (IOMK-GN) based on IOMK that allows for the direct parameterization of a Markovian embedded model.
Collapse
Affiliation(s)
- Viktor Klippenstein
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Niklas Wolf
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Tepper L, Dalton B, Netz RR. Accurate Memory Kernel Extraction from Discretized Time-Series Data. J Chem Theory Comput 2024; 20:3061-3068. [PMID: 38603471 PMCID: PMC11044577 DOI: 10.1021/acs.jctc.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Memory effects emerge as a fundamental consequence of dimensionality reduction when low-dimensional observables are used to describe the dynamics of complex many-body systems. In the context of molecular dynamics (MD) data analysis, accounting for memory effects using the framework of the generalized Langevin equation (GLE) has proven efficient, accurate, and insightful, particularly when working with high-resolution time series data. However, in experimental systems, high-resolution data are often unavailable, raising questions about the impact of the data resolution on the estimated GLE parameters. This study demonstrates that direct memory extraction from time series data remains accurate when the discretization time is below the memory time. To obtain memory functions reliably, even when the discretization time exceeds the memory time, we introduce a Gaussian Process Optimization (GPO) scheme. This scheme minimizes the deviation of discretized two-point correlation functions between time series data and GLE simulations and is able to estimate accurate memory kernels as long as the discretization time stays below the longest time scale in the data, typically the barrier crossing time.
Collapse
Affiliation(s)
- Lucas Tepper
- Department of Physics, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Benjamin Dalton
- Department of Physics, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Roland R. Netz
- Department of Physics, Freie
Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Zhang XZ, Shi R, Lu ZY, Qian HJ. Chemically Specific Systematic Coarse-Grained Polymer Model with Both Consistently Structural and Dynamical Properties. JACS AU 2024; 4:1018-1030. [PMID: 38559727 PMCID: PMC10976574 DOI: 10.1021/jacsau.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
The coarse-grained (CG) model serves as a powerful tool for the simulation of polymer systems; its reliability depends on the accurate representation of both structural and dynamical properties. However, strong correlations between structural and dynamical properties on different scales and also a strong memory effect, enforced by chain connectivity between monomers in polymer systems, render developing a chemically specific systematic CG model a formidable task. In this study, we report a systematic CG approach that combines the iterative Boltzmann inversion (IBI) method and the generalized Langevin equation (GLE) dynamics. Structural properties are ensured by using conservative CG potentials derived from the IBI method. To retrieve the correct dynamical properties in the system, we demonstrate that using a combination of a Rouse-type delta function and a time-dependent short-time kernel in the GLE simulation is practically efficient. The former can be used to adjust the long-time diffusion dynamics, and the latter can be reconstructed from an iterative procedure according to the velocity autocorrelation function (ACF) from all-atomistic (AA) simulations. Taking the polystyrene as an example, we show that not only structural properties of radial distribution function, intramolecular bond, and angle distributions can be reproduced but also dynamical properties of mean-square displacement, velocity ACF, and force ACF resulted from our CG model have quantitative agreement with the reference AA model. In addition, reasonable agreements are observed in other collective properties between our GLE-CG model and the AA simulations as well.
Collapse
Affiliation(s)
| | | | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular
Structure and Materials, Institute of Theoretical Chemistry, College
of Chemistry, Jilin University, Changchun 130021, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular
Structure and Materials, Institute of Theoretical Chemistry, College
of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Izvekov S, Rice BM. Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials. J Chem Theory Comput 2023. [PMID: 37256918 DOI: 10.1021/acs.jctc.3c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A force-matching-based method for supervised machine learning (ML) of coarse-grained (CG) free energy (FE) potentials─known as multiscale coarse-graining via force-matching (MSCG/FM)─is an efficient method to develop microscopically informed CG models that are thermodynamically and statistically equivalent to the reference microscopic models. For low-resolution models, when the coarse-graining is at supramolecular scales, objective-oriented clustering of nonbonded particles is required and the reduced description becomes a function of the clustering algorithm. In the present work, we explore the dependence of the ML of the CG Helmholtz FE potential on the clustering algorithm. We consider coarse-graining based on partitional (k-means, leading to Voronoi diagram) and hierarchical agglomerative (bottom-up) clustering algorithms common in unsupervised ML and develop theory connecting the MSCG/FM learned CG Helmholtz potential and the clustering statistics. By combining the agglomerative clustering and the MSCG/FM learning in a recursive manner, we propose an efficient ML methodology to develop the fine-to-low resolution hierarchies of the CG models. The methodology does not suffer from degrading accuracy or increased computational cost to construct larger hierarchies and as such does not impose an upper size limitation of the CG particles resulting from the extended hierarchies. The utility of the methodology is demonstrated by obtaining the bottom-up agglomerative hierarchy for liquid nitromethane from all-atom molecular dynamics (MD) simulations. For agglomerative hierarchies, we prove the existence of renormalization group transformations that indicate self-similarity and allow for learning the low-resolution MSCG/FM potentials at low computational cost by rescaling and renormalizing the certain finer-resolution members of the hierarchy. The hierarchies of the CG models can be used to carry out simulations under constant-pressure conditions.
Collapse
Affiliation(s)
- Sergei Izvekov
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Betsy M Rice
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
5
|
Chan KC, Li Z, Wenzel W. A Mori-Zwanzig Dissipative Particle Dynamics Approach for Anisotropic Coarse Grained Molecular Dynamics. J Chem Theory Comput 2023; 19:910-923. [PMID: 36645752 DOI: 10.1021/acs.jctc.2c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Coarse grained (CG) molecular dynamics simulations are widely used to accelerate atomistic simulations but generally lack a formalism to preserve the dynamics of the system. For spherical particles, the Mori-Zwanzig approach, while computationally complex, has ameliorated this problem. Here we present an anisotropic dissipative particle dynamics (ADPD) model as an extension of this approach, which accounts for the anisotropy for both conservative and nonconservative interactions. For a simple anisotropic system we parametrize the coarse grained force field representing ellipsoidal CG particles from the full-atomistic simulation. To represent the anisotropy of the system, both the conservative and dissipative terms are approximated using the Gay-Berne (GB) functional forms via a force-matching approach. We compare our model with other CG models and demonstrate that it yields better results in both static and dynamical properties. The inclusion of the anisotropic nonconservative force preserves the microscopic dynamical details, and hence the dynamical properties, such as diffusivity, can be better reproduced by the aspherical model. By generalizing the isotropic DPD model, this framework is effective and promising for the development of the CG model for polymers, macromolecules, and biological systems.
Collapse
Affiliation(s)
- Ka Chun Chan
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen76344, Germany
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina29634, United States
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen76344, Germany
| |
Collapse
|
6
|
Klippenstein V, van der Vegt NFA. Bottom-Up Informed and Iteratively Optimized Coarse-Grained Non-Markovian Water Models with Accurate Dynamics. J Chem Theory Comput 2023; 19:1099-1110. [PMID: 36745567 PMCID: PMC9979609 DOI: 10.1021/acs.jctc.2c00871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular dynamics (MD) simulations based on coarse-grained (CG) particle models of molecular liquids generally predict accelerated dynamics and misrepresent the time scales for molecular vibrations and diffusive motions. The parametrization of Generalized Langevin Equation (GLE) thermostats based on the microscopic dynamics of the fine-grained model provides a promising route to address this issue, in conjunction with the conservative interactions of the CG model obtained with standard coarse graining methods, such as iterative Boltzmann inversion, force matching, or relative entropy minimization. We report the application of a recently introduced bottom-up dynamic coarse graining method, based on the Mori-Zwanzig formalism, which provides accurate estimates of isotropic GLE memory kernels for several CG models of liquid water. We demonstrate that, with an additional iterative optimization of the memory kernels (IOMK) for the CG water models based on a practical iterative optimization technique, the velocity autocorrelation function of liquid water can be represented very accurately within a few iterations. By considering the distinct Van Hove function, we demonstrate that, with the presented methods, an accurate representation of structural relaxation can be achieved. We consider several distinct CG potentials to study how the choice of the CG potential affects the performance of bottom-up informed and iteratively optimized models.
Collapse
|
7
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
8
|
Klippenstein V, van der Vegt N. Cross-Correlation Corrected Friction in Generalized Langevin Models: Application to the continuous Asakura-Oosawa Model. J Chem Phys 2022; 157:044103. [DOI: 10.1063/5.0093056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a previous study we proposed a method to parameterize isotropic, configuration independent, non-Markovian generalized Langevin thermostats to achieve dynamic consistency in coarse-grained models. In the current study, by applying the same strategy, we develop coarse-grained implicit solvent models for the continuous Asakura-Oosawa model, which under certain conditions allows to develop very accurate coarse-grained potentials. By developing coarse-grained models for different reference systems with varying parameters, we test the broader applicability of the proposed procedure and demonstrate the relevance of accurate coarse-grained potentials in bottom-up derived dissipative models. We study how different system parameters affect the dynamic representability of the coarse-grained models. In particular we find that the quality of the coarse-grained potential is crucial to correctly model the backscattering effect due to collisions on the coarse-grained scale. In the dynamics of colloid suspensions the hydrodynamic interactions affect the long-time scale dynamics by solvent mediated momentum transfer. These interactions are not explicitly modeled in the presented coarse-grained models, which poses some limitations to the proposed coarse-graining scheme. The Asakura-Oosawa model allows a tuning of system parameters, to gain an improved understanding of these limitations. We also propose three new iterative optimization schemes to fine tune the generalized Langevin thermostat to exactly match the reference velocity-autocorrelation function.
Collapse
Affiliation(s)
| | - Nico van der Vegt
- Chemistry, Technische Universität Darmstadt Fachbereich Chemie, Germany
| |
Collapse
|
9
|
Asgarpour Khansary M, Shirazian S, Walker G. A molecularly enhanced proof of concept for targeting cocrystals at molecular scale in continuous pharmaceuticals cocrystallization. Proc Natl Acad Sci U S A 2022; 119:e2114277119. [PMID: 35594395 PMCID: PMC9173768 DOI: 10.1073/pnas.2114277119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
It is impossible to optimize a process for a target drug product with the desired profile without a proper understanding of the interplay among the material attributes, the process parameters, and the attributes of the drug product. There is a particular need to bridge the micro- and mesoscale events that occur during this process. Here, we propose а molecular engineering methodology for the continuous cocrystallization process, based on Raman spectra measured experimentally with a probe and from quantum mechanical calculations. Using molecular dynamics simulations, the theoretical Raman spectra were calculated from first principles for local mixture structures under an external shear force at various temperatures. A proof of concept is developed to build the process design space from the computed data. We show that the determined process design space provides valuable insight for optimizing the cocrystallization process at the nanoscale, where experimental measurements are difficult and/or inapplicable. The results suggest that our method may be used to target cocrystallization processes at the molecular scale for improved pharmaceutical synthesis.
Collapse
Affiliation(s)
| | - Saeed Shirazian
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX Ireland
| | - Gavin Walker
- Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, V94 T9PX Ireland
| |
Collapse
|
10
|
Meinel MK, Müller-Plathe F. Roughness Volumes: An Improved RoughMob Concept for Predicting the Increase of Molecular Mobility upon Coarse-Graining. J Phys Chem B 2022; 126:3737-3747. [PMID: 35559647 DOI: 10.1021/acs.jpcb.2c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reduced number of degrees of freedom in a coarse-grained molecular model compared to its parent atomistic model not only makes it possible to simulate larger systems for longer time scales but also results in an artificial mobility increase. The RoughMob method [Meinel, M. K. and Müller-Plathe, F. J. Chem. Theory Comput. 2020, 16, 1411.] linked the acceleration factor of the dynamics to the loss of geometric information upon coarse-graining. Our hypothesis is that coarse-graining a multiatom molecule or group into a single spherical bead smooths the molecular surface and, thus, leads to reduced intermolecular friction. A key parameter is the molecular roughness difference, which is calculated via a numerical comparison of the molecular surfaces of both the atomistic and coarse-grained models. Augmenting the RoughMob method, we add the concept of the region where the roughness acts. This information is contained in four so-called roughness volumes. For 17 systems of homogeneous hydrocarbon fluids, simple one-bead coarse-grained models are derived by the structure-based iterative Boltzmann inversion. They include 13 different homogeneous aliphatic and aromatic molecules and two different mapping schemes. We present a simple way to correlate the roughness volumes to the acceleration factor. The resulting relation is able to a priori predict the acceleration factors for an extended size and shape range of hydrocarbon molecules, with different mapping schemes and different densities.
Collapse
Affiliation(s)
- Melissa K Meinel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| |
Collapse
|
11
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Brünig FN, Geburtig O, Canal AV, Kappler J, Netz RR. Time-Dependent Friction Effects on Vibrational Infrared Frequencies and Line Shapes of Liquid Water. J Phys Chem B 2022; 126:1579-1589. [PMID: 35167754 PMCID: PMC8883462 DOI: 10.1021/acs.jpcb.1c09481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
From ab initio simulations
of liquid water, the time-dependent
friction functions and time-averaged nonlinear effective bond potentials
for the OH stretch and HOH bend vibrations are extracted. The obtained
friction exhibits not only adiabatic contributions at and below the
vibrational time scales but also much slower nonadiabatic contributions,
reflecting homogeneous and inhomogeneous line broadening mechanisms,
respectively. Intermolecular interactions in liquid water soften both
stretch and bend potentials compared to the gas phase, which by itself
would lead to a red-shift of the corresponding vibrational bands.
In contrast, nonadiabatic friction contributions cause a spectral
blue shift. For the stretch mode, the potential effect dominates,
and thus, a significant red shift when going from gas to the liquid
phase results. For the bend mode, potential and nonadiabatic friction
effects are of comparable magnitude, so that a slight blue shift results,
in agreement with well-known but puzzling experimental findings. The
observed line broadening is shown to be roughly equally caused by
adiabatic and nonadiabatic friction contributions for both the stretch
and bend modes in liquid water. Thus, the quantitative analysis of
the time-dependent friction that acts on vibrational modes in liquids
advances the understanding of infrared vibrational frequencies and
line shapes.
Collapse
|
13
|
Izvekov S. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium. Phys Rev E 2021; 104:024121. [PMID: 34525637 DOI: 10.1103/physreve.104.024121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022]
Abstract
We present a generalized Langevin equation (GLE) of motion that governs exactly the time evolution of phase-space observables in finite open systems described by classical Hamiltonians with explicitly time-dependent potentials. This formalism is based on the Mori-Zwanzig projection operator (PO) method with a time-independent Zwanzig PO within a Heisenberg (Lagrangian) picture and reduced description of Hamiltonian systems in terms of canonical relevant and irrelevant coordinates. We demonstrate that, similarly to closed systems, GLE dynamics in Hamiltonian systems in the presence of time-dependent potentials is determined by conservative, dissipative memory, and projected force fields, and that the memory functions relate to the projected force, which is a two-time process, in a way that is reminiscent of the equilibrium second fluctuation-dissipation relation. We further show that, in the most general case, the memory kernel depends on the relevant momentum gradients of the (Boltzmann) entropy of the irrelevant subsystem. Using two Zwanzig operators which are, respectively, functionals of the canonical and generalized canonical probability densities, we then derive what we call canonical and generalized canonical GLEs. Further, we can formulate the particle-based, coarse-grained (CG) GLE dynamics by transitioning to Jacobi coordinates which corresponds to a particle set partitioning of the Hamiltonian system. The obtained canonical CG GLE of motion for the relevant momenta is a generalization of the CG equation of motion known for closed systems. Also, using a Markovian approximation of the canonical CG GLE, we can extend the dissipative particle dynamics equation to open systems. A distinctive feature of our extension is a use of explicitly time-dependent frictions, which reflect the changes in the dissipation rate caused by time-dependent coupling to an external bath. Our GLE formalism and workflow constitute a general and viable framework that can be readily used as a starting point to rigorously formulate microscopically informed CG treatments for a variety of phenomena in externally forced systems far from equilibrium.
Collapse
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
14
|
Klippenstein V, van der Vegt NFA. Cross-correlation corrected friction in (generalized) Langevin models. J Chem Phys 2021; 154:191102. [PMID: 34240903 DOI: 10.1063/5.0049324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a route for parameterizing isotropic (generalized) Langevin [(G)LE] thermostats with the aim to correct the dynamics of coarse-grained (CG) models with pairwise conservative interactions. The approach is based on the Mori-Zwanzig formalism and derives the memory kernels from Q-projected time correlation functions. Bottom-up informed (GLE and LE) thermostats for a CG star-polymer melt are investigated, and it is demonstrated that the inclusion of memory in the CG simulation leads to predictions of polymer diffusion in quantitative agreement with fine-grained simulations. Interestingly, memory effects are observed in the diffusive regime. We demonstrate that previously neglected cross-correlations between the "irrelevant" and the CG degree of freedom are important and lie at the origin of shortcomings in previous CG simulations.
Collapse
Affiliation(s)
- Viktor Klippenstein
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Klippenstein V, Tripathy M, Jung G, Schmid F, van der Vegt NFA. Introducing Memory in Coarse-Grained Molecular Simulations. J Phys Chem B 2021; 125:4931-4954. [PMID: 33982567 PMCID: PMC8154603 DOI: 10.1021/acs.jpcb.1c01120] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Preserving the correct dynamics at the coarse-grained (CG) level is a pressing problem in the development of systematic CG models in soft matter simulation. Starting from the seminal idea of simple time-scale mapping, there have been many efforts over the years toward establishing a meticulous connection between the CG and fine-grained (FG) dynamics based on fundamental statistical mechanics approaches. One of the most successful attempts in this context has been the development of CG models based on the Mori-Zwanzig (MZ) theory, where the resulting equation of motion has the form of a generalized Langevin equation (GLE) and closely preserves the underlying FG dynamics. In this Review, we describe some of the recent studies in this regard. We focus on the construction and simulation of dynamically consistent systematic CG models based on the GLE, both in the simple Markovian limit and the non-Markovian case. Some recent studies of physical effects of memory are also discussed. The Review is aimed at summarizing recent developments in the field while highlighting the major challenges and possible future directions.
Collapse
Affiliation(s)
- Viktor Klippenstein
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Madhusmita Tripathy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21 A, A-6020 Innsbruck, Austria
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Li B, Daoulas K, Schmid F. Dynamic coarse-graining of polymer systems using mobility functions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:194004. [PMID: 33690176 DOI: 10.1088/1361-648x/abed1b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
We propose a dynamic coarse-graining (CG) scheme for mapping heterogeneous polymer fluids onto extremely CG models in a dynamically consistent manner. The idea is to use as target function for the mapping a wave-vector dependent mobility function derived from the single-chain dynamic structure factor, which is calculated in the microscopic reference system. In previous work, we have shown that dynamic density functional calculations based on this mobility function can accurately reproduce the order/disorder kinetics in polymer melts, thus it is a suitable starting point for dynamic mapping. To enable the mapping over a range of relevant wave vectors, we propose to modify the CG dynamics by introducing internal friction parameters that slow down the CG monomer dynamics on local scales, without affecting the static equilibrium structure of the system. We illustrate and discuss the method using the example of infinitely long linear Rouse polymers mapped onto ultrashort CG chains. We show that our method can be used to construct dynamically consistent CG models for homopolymers with CG chain lengthN= 4, whereas for copolymers, longer CG chain lengths are necessary.
Collapse
Affiliation(s)
- Bing Li
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kostas Daoulas
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
17
|
Baul U, Dzubiella J. Structure and dynamics of responsive colloids with dynamical polydispersity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:174002. [PMID: 33443239 DOI: 10.1088/1361-648x/abdbaa] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Dynamical polydispersity in single-particle properties, for example a fluctuating particle size, shape, charge density, etc, is intrinsic to responsive colloids (RCs), such as biomacromolecules or microgels, but is typically not resolved in coarse-grained mesoscale simulations. Here, we present Brownian dynamics simulations of suspensions of RCs modeling soft hydrogel colloids, for which the size of the individual particles is an explicitly resolved (Gaussian) degree of freedom and dynamically responds to the local interacting environment. We calculate the liquid structure, emergent size distributions, long-time diffusion, and property (size) relaxation kinetics for a wide range of densities and intrinsic property relaxation times in the canonical ensemble. Comparison to interesting reference cases, such as conventional polydisperse suspensions with a frozen parent distribution, or conventional monodisperse systems interacting with an effective pair potential for one fixed size, shows a significant spread in the structure and dynamics. The differences, most apparent in the high density regimes, are due to many-body correlations and the dynamical coupling between property and translation in RC systems, not explicitly accounted for in the conventional treatments. In particular, the translational diffusion in the RC systems is surprisingly close to the free (single RC) diffusion, mainly due to a cancellation of crowding and size compression effects. We show that an effective monodisperse pair potential can be constructed that describes the many-body correlations reasonably well by convoluting the RC pair potential with the density-dependent emergent size distributions and using a mean effective diffusion constant.
Collapse
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
18
|
Mantha S, Qi S, Schmid F. Bottom-up Construction of Dynamic Density Functional Theories for Inhomogeneous Polymer Systems from Microscopic Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sriteja Mantha
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Shuanhu Qi
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
19
|
Wörner SJ, Bereau T, Kremer K, Rudzinski JF. Direct route to reproducing pair distribution functions with coarse-grained models via transformed atomistic cross correlations. J Chem Phys 2020; 151:244110. [PMID: 31893905 DOI: 10.1063/1.5131105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coarse-grained (CG) models are often parameterized to reproduce one-dimensional structural correlation functions of an atomically detailed model along the degrees of freedom governing each interaction potential. While cross correlations between these degrees of freedom inform the optimal set of interaction parameters, the correlations generated from the higher-resolution simulations are often too complex to act as an accurate proxy for the CG correlations. Instead, the most popular methods determine the interaction parameters iteratively while assuming that individual interactions are uncorrelated. While these iterative methods have been validated for a wide range of systems, they also have disadvantages when parameterizing models for multicomponent systems or when refining previously established models to better reproduce particular structural features. In this work, we propose two distinct approaches for the direct (i.e., noniterative) parameterization of a CG model by adjusting the high-resolution cross correlations of an atomistic model in order to more accurately reflect correlations that will be generated by the resulting CG model. The derived models more accurately describe the low-order structural features of the underlying AA model while necessarily generating inherently distinct cross correlations compared with the atomically detailed reference model. We demonstrate the proposed methods for a one-site-per-molecule representation of liquid water, where pairwise interactions are incapable of reproducing the true tetrahedral solvation structure. We then investigate the precise role that distinct cross-correlation features play in determining the correct pair correlation functions, evaluating the importance of the placement of correlation features as well as the balance between features appearing in different solvation shells.
Collapse
Affiliation(s)
- Svenja J Wörner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
20
|
Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties. COMPUTATION 2019. [DOI: 10.3390/computation7030042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coarse-grained (CG) models can provide computationally efficient and conceptually simple characterizations of soft matter systems. While generic models probe the underlying physics governing an entire family of free-energy landscapes, bottom-up CG models are systematically constructed from a higher-resolution model to retain a high level of chemical specificity. The removal of degrees of freedom from the system modifies the relationship between the relative time scales of distinct dynamical processes through both a loss of friction and a “smoothing” of the free-energy landscape. While these effects typically result in faster dynamics, decreasing the computational expense of the model, they also obscure the connection to the true dynamics of the system. The lack of consistent dynamics is a serious limitation for CG models, which not only prevents quantitatively accurate predictions of dynamical observables but can also lead to qualitatively incorrect descriptions of the characteristic dynamical processes. With many methods available for optimizing the structural and thermodynamic properties of chemically-specific CG models, recent years have seen a stark increase in investigations addressing the accurate description of dynamical properties generated from CG simulations. In this review, we present an overview of these efforts, ranging from bottom-up parameterizations of generalized Langevin equations to refinements of the CG force field based on a Markov state modeling framework. We aim to make connections between seemingly disparate approaches, while laying out some of the major challenges as well as potential directions for future efforts.
Collapse
|
21
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models with Explicit Electrostatics—An Application to Butylmethylimidazolium Ionic Liquids. J Chem Theory Comput 2019; 15:1187-1198. [DOI: 10.1021/acs.jctc.8b00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|