1
|
Cao W, Hu Z, Sun H, Wang XB. Photoelectron Spectroscopy and Computational Study on Microsolvated [B 10H 10] 2- Clusters and Comparisons to Their [B 12H 12] 2- Analogues. J Phys Chem A 2024; 128:6981-6988. [PMID: 39112434 DOI: 10.1021/acs.jpca.4c04772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Microhydrated closo-boranes have attracted great interest due to their superchaotropic activity related to the well-known Hofmeister effect and important applications in biomedical and battery fields. In this work, we report a combined negative ion photoelectron spectroscopy and quantum chemical investigation on hydrated closo-decaborate clusters [B10H10]2-·nH2O (n = 1-7) with a direct comparison to their analogues [B12H12]2-·nH2O and free water clusters. A single H2O molecule is found to be sufficient to stabilize the intrinsically unstable [B10H10]2- dianion. The first two water molecules strongly interact with the solute forming B-H···H-O dihydrogen bonds while additional water molecules show substantially reduced binding energies. Unlike [B12H12]2-·nH2O possessing a highly structured water network with the attached H2O molecules arranged in a unified pattern by maximizing B-H···H-O dihydrogen bonding, distinct structural arrangements of the water clusters within [B10H10]2-·nH2O are achieved with the water cluster networks from trimer to heptamer resembling free water clusters. Such a distinct difference arises from the variations in size, symmetry, and charge distributions between these two dianions. The present finding again confirms the structural diversity of hydrogen-bonding networks in microhydrated closo-boranes and enriches our understanding of aqueous borate chemistry.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Cao W, Warneke J, Wang XB. Probing the Electronic Structure of [B 10H 10] 2- Dianion Encapsulated by an Octamethylcalix[4]pyrrole Molecule. J Phys Chem A 2024; 128:3361-3369. [PMID: 38651632 DOI: 10.1021/acs.jpca.4c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Despite being an important closo-borate in condensed phase boron chemistry, isolated [B10H10]2- is electronically unstable and has never been detected in the gas phase. Herein, we report a successful capture of this fleeting species through binding with an octamethylcalix[4]pyrrole (omC4P) molecule to form a stable gaseous omC4P·[B10H10]2- complex and its characterizations utilizing negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum, contributed by both omC4P and [B10H10]2-, is deconvoluted by subtracting the omC4P contribution to yield a [B10H10]2- spectrum. The obtained [B10H10]2- spectrum consists of four major bands spanning the electron binding energy (EBE) range from 1 to 5 eV, with the EBE gaps matching excellently with the energy intervals of computed high-lying occupied molecular orbitals of the [B10H10]2- dianion. This study showcases a generic method to utilize omC4P to capture unstable multiply charged anions in the gas phase for experimental determination of their electronic structures.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Jonas Warneke
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig 04103, Germany
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Kilic M, Jena P. Activation of Small Molecules by Modified Dodecaborate Anions. J Phys Chem A 2024; 128:1993-2002. [PMID: 38456413 PMCID: PMC10961843 DOI: 10.1021/acs.jpca.3c07361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Two of the basic requirements of a good catalyst are that molecules be bound to it with energies intermediate between physisorption and chemisorption and be simultaneously activated in the process. Using density functional theory, we have studied the interaction of small molecules such as H2, O2, N2, CO2, CO, and NH3 with modified dodecaborate anion [B12H12]2-, namely, [B12X11]- and [B12X11]2- (X = H, F, CN). Calculations of the structure, stability, and electronic properties of these species interacting with the above molecules show that they meet the above requirements. In addition, [B12X11]2- (X = F, CN) species are not only more stable than [B12X11]- species but also bind to O2 more strongly than their monoanion counterparts.
Collapse
Affiliation(s)
- Mehmet
Emin Kilic
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United
States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United
States
| |
Collapse
|
4
|
Peng X, Cao W, Hu Z, Yang Y, Sun Z, Wang XB, Sun H. Observation of a super-tetrahedral cluster of acetonitrile-solvated dodecaborate dianion via dihydrogen bonding. J Chem Phys 2024; 160:054308. [PMID: 38341708 DOI: 10.1063/5.0186614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.
Collapse
Affiliation(s)
- Xiaogai Peng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
5
|
Kawa S, Knorke H, Jin J, Rohdenburg M, Asmis KR, Tonner-Zech R, Bernhardt E, Jenne C, Finze M, Warneke J. Binding Properties of Small Electrophilic Anions [B 6 X 5 ] - and [B 10 X 9 ] - (X=Cl, Br, I): Activation of Small Molecules Based on π-Backbonding. Chemistry 2023; 29:e202302247. [PMID: 37749942 DOI: 10.1002/chem.202302247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Superelectrophilic anions constitute a special class of molecular anions that show strong binding of weak nucleophiles despite their negative charge. In this study, the binding characteristics of smaller gaseous electrophilic anions of the types [B6 X5 ]- and [B10 X9 ]- (with X=Cl, Br, I) were computationally and experimentally investigated and compared to those of the larger analogues [B12 X11 ]- . The positive charge of vacant boron increases from [B6 X5 ]- via [B10 X9 ]- to [B12 X11 ]- , as evidenced by increasing attachment enthalpies towards typical σ-donor molecules (noble gases, H2 O). However, this behavior is reversed for σ-donor-π-acceptor molecules. [B6 Cl5 ]- binds most strongly to N2 and CO, even more strongly than to H2 O. Energy decomposition analysis confirms that the orbital interaction is responsible for this opposite trend. The extended transition state natural orbitals for chemical valence method shows that the π-backdonation order is [B6 X5 ]- >[B10 X9 ]- >[B12 X11 ]- . This predicted order explains the experimentally observed red shifts of the CO and N2 stretching fundamentals compared to those of the unbound molecules, as measured by infrared photodissociation spectroscopy. The strongest red shift is observed for [B6 Cl5 N2 ]- : 222 cm-1 . Therefore, strong activation of unreactive σ-donor-π-acceptor molecules (commonly observed for cationic transition metal complexes) is achieved with metal-free molecular anions.
Collapse
Affiliation(s)
- Sebastian Kawa
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| | - Eduard Bernhardt
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Carsten Jenne
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
6
|
Poater J, Escayola S, Poater A, Teixidor F, Ottosson H, Viñas C, Solà M. Single─Not Double─3D-Aromaticity in an Oxidized Closo Icosahedral Dodecaiodo-Dodecaborate Cluster. J Am Chem Soc 2023; 145:22527-22538. [PMID: 37728951 PMCID: PMC10591335 DOI: 10.1021/jacs.3c07335] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 09/22/2023]
Abstract
3D-aromatic molecules with (distorted) tetrahedral, octahedral, or spherical structures are much less common than typical 2D-aromatic species or even 2D-aromatic-in-3D systems. Closo boranes, [BnHn]2- (5 ≤ n ≤ 14) and carboranes are examples of compounds that are singly 3D-aromatic, and we now explore if there are species that are doubly 3D-aromatic. The most widely known example of a species with double 2D-aromaticity is the hexaiodobenzene dication, [C6I6]2+. This species shows π-aromaticity in the benzene ring and σ-aromaticity in the outer ring formed by the iodine substituents. Inspired by the hexaiodobenzene dication example, in this work, we explore the potential for double 3D-aromaticity in [B12I12]0/2+. Our results based on magnetic and electronic descriptors of aromaticity together with 11B{1H} NMR experimental spectra of boron-iodinated o-carboranes suggest that these two oxidized forms of a closo icosahedral dodecaiodo-dodecaborate cluster, [B12I12] and [B12I12]2+, behave as doubly 3D-aromatic compounds. However, an evaluation of the energetic contribution of the potential double 3D-aromaticity through homodesmotic reactions shows that delocalization in the I12 shell, in contrast to the 10σ-electron I62+ ring in the hexaiodobenzene dication, does not contribute to any stabilization of the system. Therefore, the [B12I12]0/2+ species cannot be considered as doubly 3D-aromatic.
Collapse
Affiliation(s)
- Jordi Poater
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Sílvia Escayola
- Departament
de Química, Institut de Química
Computacional i Catàlisi, Universitat de Girona, C/Maria Aurèlia Capmany,
69, 17003 Girona, Catalonia Spain
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi Spain
| | - Albert Poater
- Departament
de Química, Institut de Química
Computacional i Catàlisi, Universitat de Girona, C/Maria Aurèlia Capmany,
69, 17003 Girona, Catalonia Spain
| | - Francesc Teixidor
- Institut
de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones
Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Henrik Ottosson
- Department
of Chemistry - Ångström Laboratory, Uppsala University, 751
20 Uppsala, Sweden
| | - Clara Viñas
- Institut
de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones
Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miquel Solà
- Departament
de Química, Institut de Química
Computacional i Catàlisi, Universitat de Girona, C/Maria Aurèlia Capmany,
69, 17003 Girona, Catalonia Spain
| |
Collapse
|
7
|
Jiang Y, Hu Z, Zhong C, Yang Y, Wang XB, Sun Z, Sun H, Liu Z, Peng P. Locking water molecules via ternary O-H⋯O intramolecular hydrogen bonds in perhydroxylated closo-dodecaborate. Phys Chem Chem Phys 2023; 25:25810-25817. [PMID: 37724455 DOI: 10.1039/d3cp03555g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A multitude of applications related to perhydroxylated closo-dodecaborate B12(OH)122- in the condensed phase are inseparable from the fundamental mechanisms underlying the high water orientation selectivity based on the base B12(OH)122-. Herein, we directly compare the structural evolution of water clusters, ranging from monomer to hexamer, oriented by functional groups in the bases B12H122-, B12H11OH2- and B12(OH)122- using multiple theoretical methods. A significant revelation is made regarding B12(OH)122-: each additional water molecule is locked into the intramolecular hydrogen bond B-O-H ternary ring in an embedded form. This new pattern of water cluster growth suggests that B-(H-O)⋯H-O interactions prevail over the competition from water-hydrogen bonds (O⋯H-O), distinguishing it from the behavior observed in B12H122- and B12H11OH2- bases, in which competition arises from a mixed competing model involving dihydrogen bonds (B-H⋯H-O), conventional hydrogen bonds (B-(H-O)⋯H-O) and water hydrogen bonds (O⋯H-O). Through aqueous solvation and ab initio molecular dynamics analysis, we further demonstrate the largest water clusters in the first hydrated shell with exceptional thermodynamic stability around B12(OH)122-. These findings provide a solid scientific foundation for the design of boron cluster chemistry incorporating hydroxyl-group-modified borate salts with potential implications for various applications.
Collapse
Affiliation(s)
- Yanrong Jiang
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Zhi Liu
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
| | - Peng Peng
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Jiang Y, Hu Z, Yang Y, Peng P, Zhong C, Sun H, Sun Z, Wang XB. Beyond Duality: Rationalizing Repulsive Coulomb Barriers in Host-Guest Cyclodextrin-Dodecaborate Complexes. J Phys Chem Lett 2023:6736-6742. [PMID: 37470699 DOI: 10.1021/acs.jpclett.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The repulsive Coulomb barrier (RCB), an intrinsic potential energy barrier along electron detachment or charge-separation coordinates in multiply charged anions (MCAs), provides dynamic stability to MCAs whose electronic and thermodynamic stabilities are largely dictated by strong internal Coulomb repulsions. Spectroscopic and theoretical characterizations of the RCB have been focused on isolated MCAs. In this work, we extend the RCB investigation beyond the previous scope by including noncovalent host-guest cyclodextrin-closo-dodecaborate dianionic complexes χCD·B12X122- (χ = α, β, γ; X = H, F-I). Photodechment photoelectron spectroscopy reveals the existence of two distinctly different RCBs, derived from detaching electrons from the guest dianions (RCB1) or ionizing the host neutrals (RCB2), respectively, with the latter being substantially smaller than the former. Theoretical calculations support the duality of RCBs in these complexes and further exhibit highly anisotropic nature of the RCBs.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Peng Peng
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Hou W, Yang M, Guo Y, Ma Y, Guo M, Xiao Y, Han G. Synergistic effects of caesium closo-dodecaborate on buried interface for efficient and stable perovskite solar cells. J Colloid Interface Sci 2023; 645:472-482. [PMID: 37156156 DOI: 10.1016/j.jcis.2023.04.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
The defects and strain of the buried SnO2/perovskite interface seriously affects the performances of n-i-p type perovskite solar cells. Herein, caesium closo-dodecaborate (B12H12Cs2) is introduced into buried interface to improve the device performances. B12H12Cs2 can passivate the bilateral defects of the buried interface, including the oxygen vacancy and uncoordinated Sn2+ defects on SnO2 side and the uncoordinated Pb2+ defects on perovskite side. Three-dimensional aromatic B12H12Cs2 can promote the interface charge transfer and extraction. [B12H12]2- can enhance the interface connection of buried interface by forming B-H---H-N dihydrogen bond and coordination bonds with metal ions. Meanwhile, the crystal properties of perovskite films can be improved and the buried tensile strain can be released by B12H12Cs2 due to the matched lattice between B12H12Cs2 and perovskite. In addition, Cs+ can diffuse into perovskite to reduce the hysteresis behavior by inhibiting the I- migration. Arising from the enhanced connection performances, passivated defects, improved perovskite crystallization, enhanced charge extraction, inhibited ions migration, released tensile strain at buried interface by B12H12Cs2, the corresponding devices yield a champion power conversion efficiency of 22.10% with enhanced stability. The stability of devices by B12H12Cs2 modification have been improved, and it can still maintain 72.5% of the original efficiency after 1440 h, while the control devices can only maintain 20% of the original efficiency after aging in air condition of 20-30% RH.
Collapse
Affiliation(s)
- Wenjing Hou
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, PR China.
| | - Meiling Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, PR China
| | - Yao Guo
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, PR China.
| | - Yuting Ma
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, PR China
| | - Mengna Guo
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, PR China
| | - Yaoming Xiao
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
10
|
Jiang Y, Cai Z, Yuan Q, Cao W, Hu Z, Sun H, Wang XB, Sun Z. Highly Structured Water Networks in Microhydrated Dodecaborate Clusters. J Phys Chem Lett 2022; 13:11787-11794. [PMID: 36516831 DOI: 10.1021/acs.jpclett.2c03537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report a combined photoelectron spectroscopy and theoretical investigation of a series of size-selected hydrated closo-dodecaborate clusters B12X122-·nH2O (X = H, F, or I; n = 1-6). Distinct structural arrangements of water clusters from monomer to hexamer can be achieved by using different B12X122- bases, illustrating the evident solute specificity. Because B-H···H-O dihydrogen bonds are stronger than O···H-O hydrogen bonds in water, the added water molecules are arranged in a unified binding mode by forming highly structured water networks manipulated by B12H122-. As a comparison, the hydrated B12F122- clusters display similar water evolution for n values of 1 and 2 but different binding modes for larger clusters, while water networks in B12I122- share similarities with the free water clusters. This finding provides a consistent picture of the structural diversity of hydrogen bonding networks in microhydrated dodecaborates and a molecular-level understanding of microsolvation dynamics in aqueous borate chemistry.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhaojie Cai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
11
|
Synthesis of nickel, calcium and magnesium naphthalene diimide complexes as supercapacitor materials. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Yuan Q, Rohdenburg M, Cao W, Aprà E, Landmann J, Finze M, Warneke J, Wang XB. Isolated [B 2(CN) 6] 2-: Small Yet Exceptionally Stable Nonmetal Dianion. J Phys Chem Lett 2021; 12:12005-12011. [PMID: 34890205 DOI: 10.1021/acs.jpclett.1c03533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the observation of a small, yet remarkably stable, metal-free hexacyanodiborate dianion [B2(CN)6]2- in the gas phase. Negative ion photoelectron spectroscopy (NIPES) was employed to measure its spectra at multiple laser wavelengths, yielding a 1.9 eV electron binding energy (EBE) ─a remarkably high value of electronic stability and a ∼2.60 eV repulsive Coulomb barrier (RCB) for electron detachment. This rationalizes the observation of this dianion, although homolytic charge-separation dissociation into two [B(CN)3]•- is energetically favorable. Quantum chemical calculations demonstrate a D3d staggered conformation for both the dianion and radical monoanion, and the calculated EBE and RCB match the experimental values well. The simulated density of states spectrum reproduces all measured electronic transitions, while the simulated vibrational progressions for the ground state transition cover a much narrower EBE range compared to the experimental band, indicating appreciable auto-photodetachment via electronically excited dianion resonances.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Johannes Landmann
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Tahaoğlu D, Alkan F, Durandurdu M. Theoretical investigation of substituent effects on the relative stabilities and electronic structure of [B nX n] 2- clusters. J Mol Model 2021; 27:365. [PMID: 34845522 DOI: 10.1007/s00894-021-04980-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
In this study, we provide a theoretical evaluation of relative stabilities and electronic structure for [BnXn]2- clusters (n = 10, 12, 13, 14, 15, 16). Structural and electronic characteristics of [BnXn]2- clusters are examined by comparison with the [B12X12]2- counterparts with a focus on the substituent effects (X = H, F, Cl, Br, CN, BO, OH, NH2) on the electronic structure, electron detachment energies, formation enthalpies, and charge distributions. For the electronic structure and electron detachment energies, substituent effects on boron clusters are shown to follow a very similar trend to the mesomeric and inductive effects (± M and ± I) of π-conjugated systems, and the most stable derivatives in terms of HOMO/LUMO and electron detachment energies are calculated for CN and BO substituents due to strong -M effects. In the case of formation enthalpies for larger boron clusters (n ≥ 13), the icosahedral barrier is shown to increase with the halogen and CN substitution, whereas it is possible to reduce the icosahedral barrier for the cases of X = OH and NH2. It is shown that this reduction results from destabilizing the [B12X12]2- cluster with electronic (+ M) and symmetry effects induced by OH and NH2 ligands.
Collapse
Affiliation(s)
- Duygu Tahaoğlu
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Fahri Alkan
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey.
| | - Murat Durandurdu
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey
| |
Collapse
|
14
|
Yuan Q, Chomicz-Mańka L, Makurat S, Cao W, Rak J, Wang XB. Photoelectron Spectroscopy and Theoretical Investigations of Gaseous Doubly Deprotonated 2'-Deoxynucleoside 5'-Monophosphate Dianions. J Phys Chem Lett 2021; 12:9463-9469. [PMID: 34558897 DOI: 10.1021/acs.jpclett.1c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A better understanding of the mechanism of oxidative DNA damage requires obtaining a molecular level description of nucleotides in various charge states. Herein, we report a systematic photoelectron spectroscopy and theoretical investigation of the electronic and geometric structures of four doubly deprotonated 2'-deoxynucleoside 5'-monophosphate dianions, the smallest quintessential DNA building block. These dianions are intrinsically stable with their adiabatic/vertical detachment energies (ADE/VDE) ranging from 0.85/1.07 (A) and 1.05/1.30 (G) to 1.20/1.50 (C) and 1.80/2.10 eV (T). The repulsive Coulomb barrier against electron detachment is 2.0 eV for purines and 2.5 eV for pyrimidines. Dianions are deprotonated at the phosphate group and the amino group of a nucleobase. The π-type HOMO orbital resides on the nucleobase moiety for each dianion. This spatial distribution of HOMO suggests that the most loosely bound electron is detached along the direction perpendicular to the nucleobase. When combined with the previous results, this work makes complete the depiction of basic building blocks of DNA at the molecular level.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lidia Chomicz-Mańka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Samanta Makurat
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Janusz Rak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Assessment of DFT methods for the prediction of detachment energies and electronic structures of complex and multiply charged anions. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Warneke J, Wang XB. Measuring Electronic Structure of Multiply Charged Anions to Understand Their Chemistry: A Case Study on Gaseous Polyhedral closo-Borate Dianions. J Phys Chem A 2021; 125:6653-6661. [PMID: 34323504 DOI: 10.1021/acs.jpca.1c04618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on multiply charged anions (MCAs) in the gas phase has been intensively performed during the past decades, mainly to understand fundamental molecular physics phenomena, for example, intramolecular Coulomb repulsion and existence of the repulsive Coulomb barrier. However, the relevance of these investigations with respect to understanding MCAs' chemistry appears often vague. Here, we discuss how insights into the electronic structure obtained from negative ion photoelectron spectroscopy (NIPES) combined with theoretical calculations and collision-induced dissociation can provide a fundamental understanding of the intrinsic chemical reactivity of MCAs and their fragments. This is exemplified in our studies on polyhedral closo-borate dianions [BnXn]2- (n = 6, 10, 11, 12; X = H, F-I, CN) and their fragment ions. For example, the rational design of closo-borate dianions with specific electronic properties is described, which leads to generating highly reactive fragments. Depending on the dianionic precursor, these fragments are tuned to either bind noble gases effectively or activate small molecules like CO and N2. The intrinsic electronic properties of closo-borate dianions are further compared to their electrochemistry in solutions, revealing solvent effects on the redox potentials. Neutral host molecules such as cyclodextrins are found to bind strongly to [BnXn]2-, and gas phase NIPES provides insights into the intrinsic host-guest interactions. Finally, outlooks including the direct NIPES of molecular fragment ions that cannot be generated in the condensed phase and their utilization in preparative mass spectrometry are discussed.
Collapse
Affiliation(s)
- Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany.,Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
17
|
Wang R, Zhang J, Jiang X, Ma N, Chen X, Xu C, Li J. Understanding the Electronic Structure and Stability of
B
n
X
n
0
/2–
(
n
= 4, 6; X = H, F, Cl, Br, I, At, Ts) Clusters
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruo‐Ya Wang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jing‐Xuan Zhang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xue‐Lian Jiang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Green Catalysis Center and College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Cong‐Qiao Xu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Jiang Y, Yuan Q, Cao W, Rohdenburg M, Nierstenhöfer MC, Li Z, Yang Y, Zhong C, Jenne C, Warneke J, Sun H, Sun Z, Wang XB. Gaseous cyclodextrin- closo-dodecaborate complexes χCD·B 12X 122- (χ = α, β, and γ; X = F, Cl, Br, and I): electronic structures and intramolecular interactions. Phys Chem Chem Phys 2021; 23:13447-13457. [PMID: 34008657 DOI: 10.1039/d1cp01131f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fundamental understanding of cyclodextrin-closo-dodecaborate inclusion complexes is of great interest in supramolecular chemistry. Herein, we report a systematic investigation on the electronic structures and intramolecular interactions of perhalogenated closo-dodecaborate dianions B12X122- (X = F, Cl, Br and I) binding to α-, β-, and γ-cyclodextrins (CDs) in the gas phase using combined negative ion photoelectron spectroscopy (NIPES) and density functional theory (DFT) calculations. The vertical detachment energy (VDE) of each complex and electronic stabilization of each dianion due to the CD binding (ΔVDE, relative to the corresponding isolated B12X122-) are determined from the experiments along α-, β- and γ-CD in the form of VDE (ΔVDE): 4.00 (2.10), 4.33 (2.43), and 4.30 (2.40) eV in X = F; 4.09 (1.14), 4.64 (1.69), and 4.69 (1.74) eV in X = Cl; 4.11 (0.91), 4.58 (1.38), and 4.70 (1.50) eV in X = Br; and 3.54 (0.74), 3.88 (1.08), and 4.05 (1.25) eV in X = I, respectively. All complexes have significantly higher VDEs than the corresponding isolated dodecaborate dianions with ΔVDE spanning from 0.74 eV at (α, I) to 2.43 eV at (β, F), sensitive to both host CD size and guest substituent X. DFT-optimized complex structures indicate that all B12X122- prefer binding to the wide openings of CDs with the insertion depth and binding motif strongly dependent on the CD size and halogen X. Dodecaborate anions with heavy halogens, i.e., X = Cl, Br, and I, are found outside of α-CD, while B12F122- is completely wrapped by γ-CD. Partial embedment of B12X122- into CDs is observed for the other complexes via multipronged B-XH-O/C interlocking patterns. The simulated spectra based on the density of states agree well with those of the experiments and the calculated VDEs well reproduce the experimental trends. Molecular orbital analyses suggest that the spectral features at low binding energies originated from electrons detached from the dodecaborate dianion, while those at higher binding energies are derived from electron detachment from CDs. Energy decomposition analyses reveal that the electrostatic interaction plays a dominating role in contributing to the host-guest interactions for the X = F series partially due to the formation of a O/C-HX-B hydrogen bonding network, and the dispersion forces gradually become important with the increase of halogen size.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington 99352, USA.
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington 99352, USA.
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany and Institut für Angewandte und Physikalische Chemie, Universität Bremen, Fachbereich 2-Biologie/Chemie, 28359 Bremen, Germany
| | - Marc C Nierstenhöfer
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Zhipeng Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Carsten Jenne
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany and Leibniz Institute of Surface Engineering (IOM), Sensoric Surfaces and Functional Interfaces, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington 99352, USA.
| |
Collapse
|
19
|
Wöhner K, Wulf T, Vankova N, Heine T. Strong Binding of Noble Gases to [B 12X 11] -: A Theoretical Study. J Phys Chem A 2021; 125:4760-4765. [PMID: 34036781 DOI: 10.1021/acs.jpca.1c01909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We systematically explore the stability and properties of [B12X11NG]- adducts resulting from the binding of noble gas atoms to anionic [B12X11]- clusters in the gas phase of mass spectrometers. [B12X11]- can be obtained by stripping one X- off the icosahedral closo-dodecaborate dianion [B12X12]2-. We study the binding of the noble gas atoms He, Ne, Ar, Kr, and Xe to [B12X11]- with substituents X = F, Cl, Br, I, and CN. While He cannot be captured by these clusters and Ne only binds at low temperatures, the complexes with the heavier noble gas atoms Ar, Kr, and Xe show appreciable complexation energies and exceed 1 eV at room temperature in the case of [B12(CN)11Xe]-. The predicted B-NG equilibrium distance in the complexes with Ar, Kr, and Xe is only 0.10-0.25 Å longer than the sum of the covalent radii of the two corresponding atoms, and a significant charge transfer from the noble gas atom to the icosahedral B12 cage is observed.
Collapse
Affiliation(s)
- Kevin Wöhner
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany.,Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Faculty for Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Toshiki Wulf
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.,Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Faculty for Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Nina Vankova
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
20
|
Wulf T, Warneke J, Heine T. B 12X 11(H 2) −: exploring the limits of isotopologue selectivity of hydrogen adsorption. RSC Adv 2021; 11:28466-28475. [PMID: 35478551 PMCID: PMC9038111 DOI: 10.1039/d1ra06322g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
We study the isotopologue-selective binding of dihydrogen at the undercoordinated boron site of B12X11− (X = H, F, Cl, Br, I, CN) using ab initio quantum chemistry. With a Gibbs free energy of H2 attachment reaching up to 80 kJ mol−1 (ΔG at 300 K for X = CN), these sites are even more attractive than most undercoordinated metal centers studied so far. We thus believe that they can serve as an edge case close to the upper limit of isotopologue-selective H2 adsorption sites. Differences of the zero-point energy of attachment average 5.0 kJ mol−1 between D2 and H2 and 2.7 kJ mol−1 between HD and H2, resulting in hypothetical isotopologue selectivities as high as 2.0 and 1.5, respectively, even at 300 K. Interestingly, even though attachment energies vary substantially according to the chemical nature of X, isotopologue selectivities remain very similar. We find that the H–H activation is so strong that it likely results in the instantaneous heterolytic dissociation of H2 in all cases (except, possibly, for X = H), highlighting the extremely electrophilic nature of B12X11− despite its negative charge. Unfortunately, this high reactivity also makes B12X11− unsuitable for practical application in the field of dihydrogen isotopologue separation. Thus, this example stresses the two-edged nature of strong H2 affinity, yielding a higher isotopologue selectivity on the one hand but risking dissociation on the other, and helps define a window of adsorption energies into which a material for selective adsorption near room temperature should ideally fall. The extreme H2 affinity of B12X11− gives a glimpse of how higher selectivities in adsorptive isotopologue separation may be achieved.![]()
Collapse
Affiliation(s)
- Toshiki Wulf
- Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jonas Warneke
- Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318 Leipzig, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
21
|
Rohdenburg M, Yang Z, Su P, Bernhardt E, Yuan Q, Apra E, Grabowsky S, Laskin J, Jenne C, Wang XB, Warneke J. Properties of gaseous closo-[B 6X 6] 2- dianions (X = Cl, Br, I). Phys Chem Chem Phys 2020; 22:17713-17724. [PMID: 32728676 DOI: 10.1039/d0cp02581j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic structure, collision-induced dissociation (CID) and bond properties of closo-[B6X6]2- (X = Cl-I) are investigated in direct comparison with their closo-[B12X12]2- analogues. Photoelectron spectroscopy (PES) and theoretical investigations reveal that [B6X6]2- dianions are electronically significantly less stable than the corresponding [B12X12]2- species. Although [B6Cl6]2- is slightly electronically unstable, [B6Br6]2- and [B6I6]2- are intrinsically stable dianions. Consistent with the trend in the electron detachment energy, loss of an electron (e- loss) is observed in CID of [B6X6]2- (X = Cl, Br) but not for [B6I6]2-. Halogenide loss (X- loss) is common for [B6X6]2- (X = Br, I) and [B12X12]2- (X = Cl, Br, I). Meanwhile, X˙ loss is only observed for [B12X12]2- (X = Br, I) species. The calculated reaction enthalpies of the three competing dissociation pathways (e-, X- and X˙ loss) indicated a strong influence of kinetic factors on the observed fragmentation patterns. The repulsive Coulomb barrier (RCB) determines the transition state for the e- and X- losses. A significantly lower RCB for X- loss than for e- loss was found in both experimental and theoretical investigations and can be rationalized by the recently introduced concept of electrophilic anions. The positive reaction enthalpies for X- losses are significantly lower for [B6X6]2- than for [B12X12]2-, while enthalpies for X˙ losses are higher. These observations are consistent with a difference in bond character of the B-X bonds in [B6X6]2- and [B12X12]2-. A complementary bonding analysis using QTAIM, NPA and ELI-D based methods suggests that B-X bonds in [B12X12]2- have a stronger covalent character than in [B6X6]2-, in which X has a stronger halide character.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institut für Angewandte und Physikalische Chemie, Universität Bremen, Fachbereich 2-Biologie/Chemie, 28359 Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. Boron: Its Role in Energy-Related Processes and Applications. Angew Chem Int Ed Engl 2020; 59:8800-8816. [PMID: 31625661 PMCID: PMC7317435 DOI: 10.1002/anie.201911108] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/21/2022]
Abstract
Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy-efficient products has seen boron playing key roles in energy-related research, such as 1) activating and synthesizing energy-rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron-deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability-in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy-related processes and applications.
Collapse
Affiliation(s)
- Zhenguo Huang
- School of Civil & Environmental EngineeringUniversity of Technology Sydney81 BroadwayUltimoNSW2007Australia
| | - Suning Wang
- Department of ChemistryQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Merck KGaA64293DarmstadtGermany
| | - Maik Finze
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
23
|
Fojt L, Grüner B, Šícha V, Nekvinda J, Vespalec R, Fojta M. Electrochemistry of icosahedral cobalt bis(dicarbollide) ions and their carbon and boron substituted derivatives in aqueous phosphate buffers. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. Bor in energiebezogenen Prozessen und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911108] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhenguo Huang
- School of Civil & Environmental Engineering University of Technology Sydney 81 Broadway Ultimo NSW 2007 Australien
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Kanada
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Nikolai V. Ignat'ev
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Merck KGaA 64293 Darmstadt Deutschland
| | - Maik Finze
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
25
|
Li Z, Jiang Y, Yuan Q, Warneke J, Hu Z, Yang Y, Sun H, Sun Z, Wang XB. Photoelectron spectroscopy and computational investigations of the electronic structures and noncovalent interactions of cyclodextrin-closo-dodecaborate anion complexes χ-CD·B12X122− (χ = α, β, γ; X = H, F). Phys Chem Chem Phys 2020; 22:7193-7200. [DOI: 10.1039/d0cp00700e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a joint negative ion photoelectron spectroscopy and computational study on the electronic structures and noncovalent interactions of a series of cyclodextrin-closo-dodecaborate dianion complexes, χ-CD·B12X122− (χ = α, β, γ; X = H, F).
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
- Physical Sciences Division
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Qinqin Yuan
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
- Collaborative Innovation Center of Extreme Optics
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
- Collaborative Innovation Center of Extreme Optics
| | - Xue-Bin Wang
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
26
|
Li RZ, Yuan Q, Yang Z, Aprà E, Li Z, Azov VA, Kirakci K, Warneke J, Wang XB. Photoelectron spectroscopy of [Mo6X14]2− dianions (X = Cl–I). J Chem Phys 2019; 151:194310. [DOI: 10.1063/1.5130185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ren-Zhong Li
- College of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, USA
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, USA
| | - Zheng Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, USA
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhipeng Li
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, USA
| | - Vladimir A. Azov
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, South Africa
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež1001, 250 68 Řež, Czech Republic
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, USA
| |
Collapse
|