1
|
Zou F, Li Y, Zhang P. Enantiomer-Specific Pumping of Chiral Molecules. J Phys Chem Lett 2024; 15:10554-10559. [PMID: 39401177 DOI: 10.1021/acs.jpclett.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Enantiomer-specific state transfer (ESST), which involves transferring enantiomers with different handedness of a chiral molecule into different-energy internal states, is a challenging yet significant task. Previous ESST methods are based on dynamic processes and thus require the preparation of initial states and precise control of microwave operation times. We propose a novel ESST approach, called enantiomer-specific pumping (ESP), which is based on a dissipative process and thereby eliminates the need for these two technical requirements. This approach utilizes a special microwave-induced dark state that appears exclusively for the enantiomer with a specific handedness. Specifically, in ESP, the enantiomer lacking the dark state can be pumped out of the subspace of relevant internal states, while the enantiomer with the dark state maintains a finite probability within this subspace, offering high efficiency in ESST. Notably, ESP facilitates enantiodetection without the need for enantiopure samples as reference.
Collapse
Affiliation(s)
- Fen Zou
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Yong Li
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Peng Zhang
- Department of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| |
Collapse
|
2
|
Vávra K, Döring E, Jakob J, Peterß F, Kaufmann M, Stahl P, Giesen TF, Fuchs GW. High-resolution infrared spectra and rovibrational analysis of the ν 12 band of propylene oxide. Phys Chem Chem Phys 2024; 26:23886-23892. [PMID: 39233485 DOI: 10.1039/d4cp02943g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The high-resolution infrared spectrum of the fundamental band ν12 (ring breathing) of the chiral molecule propylene oxide (CH3CHCH2O) was recorded at room temperature and under jet-cooled conditions using a quantum cascade laser at 8 μm. The observed lines with quantum numbers J ≤ 55 and Ka ≤ 21 were assigned to strong b- and c-type bands, and some low J transitions were classified as weak a-type transitions. The lines were fitted using a Watsons A-reduced Hamiltonian in the Ir representation. From the rovibrational analysis the band origin as well as the rotational constants and four quartic centrifugal distortion constants were derived.
Collapse
Affiliation(s)
- Karel Vávra
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Eileen Döring
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Jan Jakob
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Fabian Peterß
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Matin Kaufmann
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Pascal Stahl
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Thomas F Giesen
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Guido W Fuchs
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
3
|
Lee J, Abdiha E, Sartakov BG, Meijer G, Eibenberger-Arias S. Near-complete chiral selection in rotational quantum states. Nat Commun 2024; 15:7441. [PMID: 39198398 PMCID: PMC11358380 DOI: 10.1038/s41467-024-51360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Controlling the internal quantum states of chiral molecules for a selected enantiomer has a wide range of fundamental applications from collision and reaction studies, quantum information to precision spectroscopy. Achieving full enantiomer-specific state transfer is a key requirement for such applications. Using tailored microwave fields, a chosen rotational state can be enriched for a selected enantiomer, even starting from a racemic mixture. This enables rapid switching between samples of different enantiomers in a given state, holding great promise, for instance, for measuring parity violation in chiral molecules. Although perfect state-specific enantiomeric enrichment is theoretically feasible, achieving the required experimental conditions seemed unrealistic. Here, we realize near-ideal conditions, overcoming both the limitations of thermal population and spatial degeneracy in rotational states. We achieve over 92% enantiomer-specific state transfer efficiency using enantiopure samples. This indicates that 96% state-specific enantiomeric purity can be obtained from a racemic mixture, in an approach that is universally applicable to all chiral molecules of C1 symmetry. Our work integrates the control over internal quantum states with molecular chirality, thus expanding the field of state-selective molecular beams studies to include chiral research.
Collapse
Affiliation(s)
- JuHyeon Lee
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | - Elahe Abdiha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | - Boris G Sartakov
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | | |
Collapse
|
4
|
Liu B, Li Y, Ye C, Sun CP. Pump-control approach to enantiospecific state transfer. OPTICS EXPRESS 2024; 32:28282-28292. [PMID: 39538648 DOI: 10.1364/oe.528182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/17/2024] [Indexed: 11/16/2024]
Abstract
Enantiospecific state transfer of chiral molecules is extremely important because enantiomers coexist in many biologically active compounds and play significantly different physiological, pharmacological, and biological roles. The inherently strong electric-dipole optical approaches based on the cyclic three-level model of chiral molecules have been extensively discussed. But, for the cases of large chiral molecules and/or chiral molecules of low asymmetry, the four-level model with two sub-loops is more realistic to describe the molecules. Based on the four-level model, we propose a pump-control approach to realize the highly efficient enantiospecific state transfer. In our approach, two pump pulses are applied to generate molecular coherence between the ground state and the first excited state of our working model. According to the coherence of the molecules, we adjust the phase and pulse area of the control pulse, then we obtain the highly efficient enantiospecific state transfer in the first excited working state. In addition, we further optimize the fraction of enantiopure samples by adjusting the area of the two pump pulses.
Collapse
|
5
|
Cheng JJ. Efficient spatial separation for chiral molecules via optically induced forces. J Chem Phys 2024; 161:034115. [PMID: 39023053 DOI: 10.1063/5.0207903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
We investigate an efficient spatial enantioseparation method of chiral molecules in cyclic three-level systems coupled with three optical fields using optically induced forces. When the overall phase differs by π between two enantiomers, significant variations in the magnitude and direction of the optically induced forces are observed. The manipulation of the center of mass of chiral molecules in optical fields can be achieved through the induced gauge force, primarily generated from the variations in the chirality-dependent scalar potentials created by the three inhomogeneous laser fields. By appropriately configuring the system, we can completely separate the slow spatial and fast inner dynamics, making instantaneous eigenstates of the inner Hamiltonian independent of the transverse profiles of the laser beams. Compared to previous methods, which required adiabatic conditions to be satisfied, the proposed method overcomes the limitations of the adiabatic approximation by utilizing a specific system configuration. This allows for increased flexibility in the transverse profiles of the laser beams and relaxes the constraints on the velocity of chiral molecules, leading to significantly greater spatial separations achievable across a broader range of parameters.
Collapse
Affiliation(s)
- Jian-Jian Cheng
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| |
Collapse
|
6
|
Cheng JJ, Du L, Li Y, Zhao N. Robust and high-efficiency dynamical method of enantio-specific state transfer. OPTICS EXPRESS 2024; 32:8684-8696. [PMID: 38571120 DOI: 10.1364/oe.502410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/02/2024] [Indexed: 04/05/2024]
Abstract
We propose a simple dynamical method to realize fast enantio-specific state transfer (ESST) of chiral molecules. Driven by three external electromagenetic fields, the chiral molecules are modeled as cyclic three-level systems, where the overall phase differs by π for the left- and right-handed chiral molecules. We unveil that the ESST is allowed when the amplitudes of three Rabi frequencies in the cyclic three-level systems are equal. Our method is robust and highly efficient in the sense that the external fields can have arbitrary waveforms. This thus provides the opportunity of simplifying the experimental implementations of ESST through pulse design.
Collapse
|
7
|
Ye C, Sun Y, Fu L, Zhang X. Phase-matched locally chiral light for global control of chiral light-matter interaction. OPTICS LETTERS 2023; 48:5511-5514. [PMID: 37910690 DOI: 10.1364/ol.496226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Locally chiral light is an emerging tool for probing and controlling molecular chirality. It can generate large and freely adjustable enantioselectivities in purely electric-dipole effects, offering its major advantages over traditional chiral light. However, the existing types of locally chiral light are phase-mismatched, and thus the global efficiencies are greatly reduced compared with the maximum single-point efficiencies or even vanish. Here, we propose a scheme to generate phase-matched locally chiral light. To confirm this advantage, we numerically show the robust highly efficient global control of enantiospecific electronic state transfer of methyloxirane at nanoseconds. Our work potentially constitutes the starting point for developing more efficient chiroptical techniques for the studies of chiral molecules.
Collapse
|
8
|
Vogwell J, Rego L, Smirnova O, Ayuso D. Ultrafast control over chiral sum-frequency generation. SCIENCE ADVANCES 2023; 9:eadj1429. [PMID: 37595045 PMCID: PMC10438458 DOI: 10.1126/sciadv.adj1429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
We introduce an ultrafast all-optical approach for efficient chiral recognition that relies on the interference between two low-order nonlinear processes that are ubiquitous in nonlinear optics: sum-frequency generation and third-harmonic generation. In contrast to traditional sum-frequency generation, our approach encodes the medium's handedness in the intensity of the emitted harmonic signal, rather than in its phase, and it enables full control over the enantiosensitive response. We show how, by sculpting the sub-optical-cycle oscillations of the driving laser field, we can force one molecular enantiomer to emit bright light while its mirror twin remains dark, thus reaching the ultimate efficiency limit of chiral sensitivity via low-order nonlinear light-matter interactions. Our work paves the way for ultrafast and highly efficient imaging and control of the chiral electronic clouds of chiral molecules using lasers with moderate intensities, in all states of matter: from gases to liquids to solids, with molecular specificity and on ultrafast time scales.
Collapse
Affiliation(s)
- Joshua Vogwell
- Department of Physics, Imperial College London, SW7 2AZ London, UK
| | - Laura Rego
- Department of Physics, Imperial College London, SW7 2AZ London, UK
- Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Olga Smirnova
- Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin, Germany
- Technische Universität Berlin, 10623 Berlin, Germany
| | - David Ayuso
- Department of Physics, Imperial College London, SW7 2AZ London, UK
- Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin, Germany
| |
Collapse
|
9
|
Izadyari M, Naseem MT, Müstecaplıoğlu ÖE. Enantiomer detection via quantum Otto cycle. Phys Rev E 2023; 107:L042103. [PMID: 37198840 DOI: 10.1103/physreve.107.l042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Enantiomers are chiral molecules that exist in right-handed and left-handed conformations. Optical techniques of enantiomers' detection are widely employed to discriminate between left- and right-handed molecules. However, identical spectra of enantiomers make enantiomer detection a very challenging task. Here, we investigate the possibility of exploiting thermodynamic processes for enantiomer detection. In particular, we employ a quantum Otto cycle in which a chiral molecule described by a three-level system with cyclic optical transitions is considered a working medium. Each energy transition of the three-level system is coupled with an external laser drive. We find that the left- and right-handed enantiomers operate as a quantum heat engine and a thermal accelerator, respectively, when the overall phase is the control parameter. In addition, both enantiomers act as heat engines by keeping the overall phase constant and using the laser drives' detuning as the control parameter during the cycle. However, the molecules can still be distinguished because both cases' extracted work and efficiency are quantitatively very different. Accordingly, the left- and right-handed molecules can be distinguished by evaluating the work distribution in the Otto cycle.
Collapse
Affiliation(s)
- Mohsen Izadyari
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
| | - M Tahir Naseem
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Türkiye
| |
Collapse
|
10
|
Sun W, Tikhonov DS, Singh H, Steber AL, Pérez C, Schnell M. Inducing transient enantiomeric excess in a molecular quantum racemic mixture with microwave fields. Nat Commun 2023; 14:934. [PMID: 36807276 PMCID: PMC9941128 DOI: 10.1038/s41467-023-36653-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Chiral molecules with low enantiomer interconversion barriers racemize even at cryogenic temperatures due to quantum tunneling, forming a racemic mixture that is impossible to separate using conventional chemical methods. Here we both experimentally and theoretically demonstrate a method to create and probe a state-specific enantiomeric enrichment for such molecular systems. The coherent, non-linear, and resonant approach is based on a microwave six-wave mixing scheme and consists of five phase-controlled microwave pulses. The first three pulses induce a chiral wavepacket in a chosen rotational state, while the consecutive two pulses induce a polarization for a particular rotational transition (listen transition) with a magnitude proportional to the enantiomeric excess created. The experiments are performed with the transiently chiral molecule benzyl alcohol, where a chiral molecular response was successfully obtained. This signal demonstrates that enantiomeric excess can be induced in a quantum racemic mixture of a transiently chiral molecule using the developed microwave six-wave mixing scheme, which is an important step towards controlling non-rigid chiral molecular systems.
Collapse
Affiliation(s)
- Wenhao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Himanshi Singh
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Amanda L Steber
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, E-47011, Valladolid, Spain
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, E-47011, Valladolid, Spain
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|
11
|
Tikhonov DS, Blech A, Leibscher M, Greenman L, Schnell M, Koch CP. Pump-probe spectroscopy of chiral vibrational dynamics. SCIENCE ADVANCES 2022; 8:eade0311. [PMID: 36475788 PMCID: PMC9728962 DOI: 10.1126/sciadv.ade0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
A planar molecule may become chiral upon excitation of an out-of-plane vibration, changing its handedness during half a vibrational period. When exciting such a vibration in an ensemble of randomly oriented molecules with an infrared laser, half of the molecules will undergo the vibration phase-shifted by π compared to the other half, and no net chiral signal is observed. This symmetry can be broken by exciting the vibrational motion with a Raman transition in the presence of a static electric field. Subsequent ionization of the vibrating molecules by an extreme ultraviolet pulse probes the time-dependent net handedness via the photoelectron circular dichroism. Our proposal for pump-probe spectroscopy of molecular chirality, based on quantum-chemical theory and discussed for the example of the carbonyl chlorofluoride molecule, is feasible with current experimental technology.
Collapse
Affiliation(s)
- Denis S. Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Alexander Blech
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Monika Leibscher
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Loren Greenman
- Department of Physics, Kansas State University, 116 Cardwell Hall, 1228 N. 17th St., Manhattan, KS 66506-2601, USA
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Christiane P. Koch
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
12
|
Damari R, Beer A, Rosenberg D, Fleischer S. Molecular orientation echoes via concerted terahertz and near-IR excitations. OPTICS EXPRESS 2022; 30:44464-44471. [PMID: 36522870 DOI: 10.1364/oe.474024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
A new and efficient method for orientation echo spectroscopy is presented and realized experimentally. The excitation scheme utilizes concerted rotational excitations by both ultrashort terahertz and near-IR pulses and its all-optical detection is enabled by the molecular orientation-induced second harmonic method [J. Phys. Chem. A126, 3732 (2022)10.1021/acs.jpca.2c03237]. This method provides practical means for orientation echo spectroscopy of gas phase molecules and highlights the intriguing underlying physics of coherent rotational dynamics induced by judiciously-orchestrated interactions with both resonant (terahertz) and nonresonant (NIR) fields.
Collapse
|
13
|
Ayuso D, Ordonez AF, Smirnova O. Ultrafast chirality: the road to efficient chiral measurements. Phys Chem Chem Phys 2022; 24:26962-26991. [PMID: 36342056 PMCID: PMC9673685 DOI: 10.1039/d2cp01009g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 08/20/2023]
Abstract
Today we are witnessing the electric-dipole revolution in chiral measurements. Here we reflect on its lessons and outcomes, such as the perspective on chiral measurements using the complementary principles of "chiral reagent" and "chiral observer", the hierarchy of scalar, vectorial and tensorial enantio-sensitive observables, the new properties of the chiro-optical response in the ultrafast and non-linear domains, and the geometrical magnetism associated with the chiral response in photoionization. The electric-dipole revolution is a landmark event. It has opened routes to extremely efficient enantio-discrimination with a family of new methods. These methods are governed by the same principles but work in vastly different regimes - from microwaves to optical light; they address all molecular degrees of freedom - electronic, vibrational and rotational, and use flexible detection schemes, i.e. detecting photons or electrons, making them applicable to different chiral phases, from gases to liquids to amorphous solids. The electric-dipole revolution has also enabled enantio-sensitive manipulation of chiral molecules with light. This manipulation includes exciting and controlling ultrafast helical currents in vibronic states of chiral molecules, enantio-sensitive control of populations in electronic, vibronic and rotational molecular states, and opens the way to efficient enantio-separation and enantio-sensitive trapping of chiral molecules. The word "perspective" has two meanings: an "outlook" and a "point of view". In this perspective article, we have tried to cover both meanings.
Collapse
Affiliation(s)
- David Ayuso
- Max-Born-Institut, 12489 Berlin, Germany
- Imperial College London, SW7 2AZ London, UK.
| | - Andres F Ordonez
- Max-Born-Institut, 12489 Berlin, Germany
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - Olga Smirnova
- Max-Born-Institut, 12489 Berlin, Germany
- Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
14
|
Cai MR, Ye C, Dong H, Li Y. Enantiodetection of Chiral Molecules via Two-Dimensional Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:103201. [PMID: 36112446 DOI: 10.1103/physrevlett.129.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Enantiodetection of chiral molecules is important to chemical reaction control and biological function designs. Traditional optical methods of enantiodetection rely on the weak magnetic-dipole or electric-quadrupole interactions, and in turn suffer from the weak signal and low sensitivity. We propose a new optical enantiodetection method to determine the enantiomeric excess via two-dimensional (2D) spectroscopy of the chiral mixture driven by three electromagnetic fields. The quantities of left- and right-handed chiral molecules are reflected by the intensities of different peaks on the 2D spectrum, separated by the chirality-dependent frequency shifts resulting from the relative strong electric-dipole interactions between the chiral molecules and the driving fields. Thus, the enantiomeric excess can be determined via the intensity ratio of the peaks for the two enantiomers.
Collapse
Affiliation(s)
- Mao-Rui Cai
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Chong Ye
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Yong Li
- Beijing Computational Science Research Center, Beijing 100193, China
- Center for Theoretical Physics and School of Science, Hainan University, Haikou 570228, China
- Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
15
|
Zou F, Chen YY, Liu B, Li Y. Enantiodiscrimination of chiral molecules via quantum correlation function. OPTICS EXPRESS 2022; 30:31073-31085. [PMID: 36242198 DOI: 10.1364/oe.466143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
We propose a method to realize enantiodiscrimination of chiral molecules based on quantum correlation function in a driven cavity-molecule system, where the chiral molecule is coupled with a quantized cavity field and two classical light fields to form a cyclic three-level model. According to the inherent properties of electric-dipole transition moments of chiral molecules, there is a π-phase difference in the overall phase of the cyclic three-level model for the left- and right-handed chiral molecules. Thus, the correlation function depends on this overall phase and is chirality-dependent. The analytical and numerical results indicate that the left- and right-handed chiral molecules can be discriminated by detecting quantum correlation function. Our work opens up a promising route to discriminate molecular chirality, which is an extremely important task in pharmacology and biochemistry.
Collapse
|
16
|
Gong X, Guo Y, Wang C, Luo X, Shu CC. Discrimination of enantiomers for chiral molecules using analytically designed microwave pulses. Phys Chem Chem Phys 2022; 24:18722-18728. [PMID: 35899833 DOI: 10.1039/d2cp02776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We perform a theoretical exploration of quantum coherent control of enantio-selective state transfer (ESST) of chiral molecules with three rotational states connected by the a-type, b-type, and c-type components of the transition dipole moments. A pulse-area theorem based on a closed-loop three-level system is derived without applying the rotating-wave approximation and used to analytically design three linearly polarized microwave pulses with optimal amplitudes and phases. By utilizing two optimized microwaves to mix two excited rotational states into the maximal coherence, we find that the discrimination of enantiomers via ESST for chiral molecules can be achieved by controlling the delay time of the third optimized microwave pulse. We examine the robustness of such control schemes against the Rabi frequency and detuning errors and the environment effect through pure dephasing processes for practical applications. This work provides an alternative approach to analytically designing optimal control fields for quantum control of ESST by using complex pulse areas.
Collapse
Affiliation(s)
- Xun Gong
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China. .,Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Yu Guo
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China.
| | - Chengzhi Wang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China.
| | - Xiaobing Luo
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuan-Cun Shu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
17
|
Xu L, Tutunnikov I, Prior Y, Averbukh I. Optimization of the double-laser-pulse scheme for enantioselective orientation of chiral molecules. J Chem Phys 2022; 157:034304. [DOI: 10.1063/5.0092114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a comprehensive study of enantioselective orientation of chiral molecules excited by a pair of delayed cross-polarized femtosecond laser pulses. We show that by optimizing the pulses' parameters, a significant (~ 10%) degree of enantioselective orientation can be achieved at zero and at five kelvin rotational temperatures. This study suggests a set of reasonable experimental conditions for inducing and measuring strong enantioselective orientation. The strong enantioselective orientation and the wide availability of the femtosecond laser systems required for the proposed experiments may open new avenues for discriminating and separating molecular enantiomers.
Collapse
Affiliation(s)
- Long Xu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | - Ilia Tutunnikov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | | | - Ilya Averbukh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| |
Collapse
|
18
|
Lee J, Bischoff J, Hernandez-Castillo AO, Sartakov B, Meijer G, Eibenberger-Arias S. Quantitative Study of Enantiomer-Specific State Transfer. PHYSICAL REVIEW LETTERS 2022; 128:173001. [PMID: 35570421 DOI: 10.1103/physrevlett.128.173001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
We here report on a quantitative study of enantiomer-specific state transfer, performed in a pulsed, supersonic molecular beam. The chiral molecule 1-indanol is cooled to low rotational temperatures (1-2 K) and a selected rotational level in the electronic and vibrational ground state of the most abundant conformer is depleted via optical pumping on the S_{1}←S_{0} transition. Further downstream, three consecutive microwave pulses with mutually perpendicular polarizations and with a well-defined duration and phase are applied. The population in the originally depleted rotational level is subsequently monitored via laser-induced fluorescence detection. This scheme enables a quantitative comparison of experiment and theory for the transfer efficiency in what is the simplest enantiomer-specific state transfer triangle for any chiral molecule, that is, the one involving the absolute ground state level, |J_{K_{a}K_{c}}⟩=|0_{00}⟩. Moreover, this scheme improves the enantiomer enrichment by over an order of magnitude compared to previous works. Starting with a racemic mixture, a straightforward extension of this scheme allows one to create a molecular beam with an enantiomer-pure rotational level, holding great prospects for future spectroscopic and scattering studies.
Collapse
Affiliation(s)
- JuHyeon Lee
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Johannes Bischoff
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Boris Sartakov
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilovstreet 38, 119991 Moscow, Russia
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | |
Collapse
|
19
|
Abstract
Microwave three-wave mixing allows for enantiomer-selective excitation of randomly oriented chiral molecules into rotational states with different energy. The random orientation of molecules is reflected in the degeneracy of the rotational spectrum with respect to the orientational quantum number M and reduces, if not accounted for, enantiomer-selectivity. Here, we show how to design pulse sequences with maximal enantiomer-selectivity from an analysis of the M-dependence of the Rabi frequencies associated with rotational transitions induced by resonant microwave drives. We compare different excitations schemes for rotational transitions and show that maximal enantiomer-selectivity at a given rotational temperature is achieved for synchronized three-wave mixing with circularly polarized fields.
Collapse
|
20
|
Construction and Demonstration of a 6–18 GHz Microwave Three-Wave Mixing Experiment Using Multiple Synchronized Arbitrary Waveform Generators. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This manuscript details the construction and demonstration of the first known microwave three-wave mixing (M3WM) experiment utilizing multiple arbitrary waveform generators (AWGs) completely operable in the 6–18 GHz frequency range for use in chirality determination and quantification. Many M3WM techniques, which involve two orthogonal, subsequent Rabi π/2 and π microwave pulses, suffer from flexibility in pulse types and timings as well as frequency due to most instruments only using one, one-channel AWG and the M3WM probability decreasing with an increasing quantum number, J. In this work, we presented an M3WM instrument that allows that flexibility by introducing multiple, synchronized AWGs and adheres to the high probability transition loop pathways in carvone. The functionality and reliability of the instrument were demonstrated using a series of experiments and mixtures of the R and S enantiomers and determined to be of similar accuracy to other reported M3WM setups with the additional benefit of flexibility in pulsing schemes.
Collapse
|
21
|
Abstract
Two molecules are enantiomers if they are nonsuperimposable mirror images of each other. Electric dipole-allowed cyclic transitions |1⟩ → |2⟩ → |3⟩ → |1⟩ obey the symmetry relation OR=-OS, where OR,S = (μ21R,SE21)(μ13R,SE13)(μ32R,SE32) and R and S label the two enantiomers. Herein, we generalize the concept of topological frequency conversion to an ensemble of enantiomers. We show that, within a rotating-frame, the pumping power between fields of frequency ω1 and ω2 is sensitive to enantiomeric excess, P2→1 = ℏ[ω1ω2CLR/(2π)](NR - NS), where Ni is the number of enantiomers i and CLR is an enantiomer-dependent Chern number. Connections with chiroptical microwave spectroscopy are made. Our work provides an underexplored and fertile connection between topological physics and molecular chirality.
Collapse
Affiliation(s)
- Kai Schwennicke
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Suzuki YI. Wave packet simulations for molecular orientation induced by circularly polarized light: Toward chiral resolution in the gas phase. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Chen YY, Ye C, Li Y. Enantio-detection via cavity-assisted three-photon processes. OPTICS EXPRESS 2021; 29:36132-36144. [PMID: 34809032 DOI: 10.1364/oe.436211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
We propose a method for enantio-detection of chiral molecules based on a cavity-molecule system, where the left- and right-handed molecules are coupled with a cavity and two classical light fields to form cyclic three-level models. Via the cavity-assisted three-photon processes based on the cyclic three-level model, photons are generated continuously in the cavity even in the absence of external driving to the cavity. However, the photonic fields generated from the three-photon processes of left- and right-handed molecules differ with the phase difference π according to the inherent properties of electric-dipole transition moments of enantiomers. This provides a potential way to detect the enantiomeric excess of chiral mixture by monitoring the output field of the cavity.
Collapse
|
24
|
Karra M, Schmidt B, Friedrich B. Quantum dynamics of a polar rotor acted upon by an electric rectangular pulse of variable duration. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1966111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Burkhard Schmidt
- Institut für Mathematik, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
25
|
Abstract
The most important problem of spectroscopic chiral analysis is the enantioselective effects of the light-molecule interactions are inherently weak and severely reduced by the environment noises. Enormous efforts had been spent to overcome this problem by enhancing the symmetry break in the light-molecule interactions or reducing the environment noises. Here, we propose an alternative way to solve this problem by using frequency-entangled two-photon pairs as probe signals and detecting them in coincidence, i.e., using quantum chiral spectroscopy. For this purpose, we develop the theory of entanglement-assisted quantum chiral spectroscopy. Our results show that the quantum spectra of the left- and right-handed molecules are always distinguishable by suitably configuring the frequency-entangled two-photon pairs. In contrast, the classical spectra of the two enantiomers, where the broadband signal photon is frequency-uncorrelated with the idle one, become indistinguishable in the strong dissipation region. This offers our quantum chiral spectroscopy a great advantage over the classical chiral spectroscopy. Our work opens up an exciting area that exploring profound advantages of the quantum spectroscopy in chiral analysis.
Collapse
Affiliation(s)
- Chong Ye
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Yifan Sun
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Xiangdong Zhang
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| |
Collapse
|
26
|
Chen YY, Ye C, Zhang Q, Li Y. Enantio-discrimination via light deflection effect. J Chem Phys 2020; 152:204305. [PMID: 32486668 DOI: 10.1063/5.0008157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We propose a theoretical method for enantio-discrimination based on the light deflection effect in four-level models of chiral molecules. This four-level model consists of a cyclic three-level subsystem coupled by three strong driving fields and an auxiliary level connected to the cyclic three-level subsystem by a weak probe field. It is shown that the induced refractive index for the weak probe field is chirality-dependent. Thus, it will lead to chirality-dependent light deflection when the intensities of two of the three strong driving fields are spatially inhomogeneous. As a result, the deflection angle of the weak probe light can be utilized to detect the chirality of pure enantiomers and enantiomeric excess of the chiral mixture. Therefore, our method may act as a tool for enantio-discrimination.
Collapse
Affiliation(s)
- Yu-Yuan Chen
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Chong Ye
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Quansheng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Yong Li
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|