1
|
Allen A, Abdur Rashid M, Rahe P, Jarvis SP, O'Shea JN, Dunn JL, Moriarty P. Self-assembly and tiling of a prochiral hydrogen-bonded network: bi-isonicotinic acid on coinage metal surfaces. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2192824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Temperton RH, Kawde A, Eriksson A, Wang W, Kokkonen E, Jones R, Gericke SM, Zhu S, Quevedo W, Seidel R, Schnadt J, Shavorskiy A, Persson P, Uhlig J. Dip-and-pull ambient pressure photoelectron spectroscopy as a spectroelectrochemistry tool for probing molecular redox processes. J Chem Phys 2022; 157:244701. [PMID: 36586986 DOI: 10.1063/5.0130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ambient pressure x-ray photoelectron spectroscopy (APXPS) can provide a compelling platform for studying an analyte's oxidation and reduction reactions in solutions. This paper presents proof-of-principle operando measurements of a model organometallic complex, iron hexacyanide, in an aqueous solution using the dip-and-pull technique. The data demonstrates that the electrochemically active liquid meniscuses on the working electrodes can undergo controlled redox reactions which were observed using APXPS. A detailed discussion of several critical experimental considerations is included as guidance for anyone undertaking comparable experiments.
Collapse
Affiliation(s)
| | - Anurag Kawde
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70 Lund, Sweden
| | - Axl Eriksson
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Weijia Wang
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - Esko Kokkonen
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - Rosemary Jones
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 22 100 Lund, Sweden
| | - Sabrina Maria Gericke
- Division of Combustion Physics, Faculty of Engineering, Lund University, Box 118, 22 100 Lund, Sweden
| | - Suyun Zhu
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - Wilson Quevedo
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | | | - Petter Persson
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70 Lund, Sweden
| | - Jens Uhlig
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70 Lund, Sweden
| |
Collapse
|
3
|
Eckert S, Mascarenhas EJ, Mitzner R, Jay RM, Pietzsch A, Fondell M, Vaz da Cruz V, Föhlisch A. From the Free Ligand to the Transition Metal Complex: FeEDTA - Formation Seen at Ligand K-Edges. Inorg Chem 2022; 61:10321-10328. [PMID: 35764301 PMCID: PMC9277664 DOI: 10.1021/acs.inorgchem.2c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Eric J. Mascarenhas
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Rolf Mitzner
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Raphael M. Jay
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
5
|
Temperton RH, Guo M, D'Acunto G, Johansson N, Rosemann NW, Prakash O, Wärnmark K, Schnadt J, Uhlig J, Persson P. Resonant X-ray photo-oxidation of light-harvesting iron (II/III) N-heterocyclic carbene complexes. Sci Rep 2021; 11:22144. [PMID: 34772983 PMCID: PMC8590020 DOI: 10.1038/s41598-021-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022] Open
Abstract
Two photoactive iron N-heterocyclic carbene complexes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\hbox {Fe}^{{{\rm{II}}}}(\hbox {btz})_2(\hbox {bpy})]^{2+}}$$\end{document}[FeII(btz)2(bpy)]2+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\hbox {Fe}^{{\rm{III}}}(\hbox {btz})_3]^{3+}}$$\end{document}[FeIII(btz)3]3+, where btz is 3,3’-dimethyl-1,1’-bis(p-tolyl)-4,4’-bis(1,2,3-triazol-5-ylidene) and bpy is 2,2’-bipyridine, have been investigated by Resonant Photoelectron Spectroscopy (RPES). Tuning the incident X-ray photon energy to match core-valence excitations provides a site specific probe of the electronic structure properties and ligand-field interactions, as well as information about the resonantly photo-oxidised final states. Comparing measurements of the Fe centre and the surrounding ligands demonstrate strong mixing of the Fe \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {t}_{{\rm{2g}}}}$$\end{document}t2g levels with occupied ligand \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π orbitals but weak mixing with the corresponding unoccupied ligand orbitals. This highlights the importance of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π-accepting and -donating considerations in ligand design strategies for photofunctional iron carbene complexes. Spin-propensity is also observed as a final-state effect in the RPES measurements of the open-shell \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{III}}}$$\end{document}FeIII complex. Vibronic coupling is evident in both complexes, where the energy dispersion hints at a vibrationally hot final state. The results demonstrate the significant impact of the iron oxidation state on the frontier electronic structure and highlights the differences between the emerging class of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{III}}}$$\end{document}FeIII photosensitizers from those of more traditional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{II}}}$$\end{document}FeII complexes.
Collapse
Affiliation(s)
- Robert H Temperton
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden.,School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.,Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden
| | - Meiyuan Guo
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Giulio D'Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Niclas Johansson
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Nils W Rosemann
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Om Prakash
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Box 124, 221 00, Lund, Sweden
| | - Kenneth Wärnmark
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Box 124, 221 00, Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden. .,Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden.
| | - Jens Uhlig
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Petter Persson
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
6
|
Eckert S, Vaz da Cruz V, Ochmann M, von Ahnen I, Föhlisch A, Huse N. Breaking the Symmetry of Pyrimidine: Solvent Effects and Core-Excited State Dynamics. J Phys Chem Lett 2021; 12:8637-8643. [PMID: 34472857 PMCID: PMC8436212 DOI: 10.1021/acs.jpclett.1c01865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C2v point group, in an aqueous solution environment, using scattering though its 2a2 resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b2 and 11a1 orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Miguel Ochmann
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Inga von Ahnen
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie,Universität
Potsdam, 14476 Potsdam, Germany
| | - Nils Huse
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
8
|
Temperton RH, Hart J, Verykokkos N, Gibson E, O'Shea JN. A soft x-ray probe of a titania photoelectrode sensitized with a triphenylamine dye. J Chem Phys 2021; 154:234707. [PMID: 34241265 DOI: 10.1063/5.0050531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a thorough soft x-ray photoelectron spectroscopy (XPS) study of a mesoporous titanium dioxide electrode sensitized with the dye 4-(diphenylamino)phenylcyanoacrylic acid, referred to as "L0." Supported by calculations, the suite of XPS, x-ray absorption spectroscopy, and resonant photoelectron spectroscopy allows us to examine bonding interactions between the dye and the surface and the frontier electronic structure at the molecule-oxide interface. While placing these measurements in the context of existing literature, this paper is intended as a useful reference for further studies of more complex triphenylamine based sensitizers.
Collapse
Affiliation(s)
| | - Jack Hart
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Nektarios Verykokkos
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Elizabeth Gibson
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - James N O'Shea
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
9
|
Nascimento DR, Biasin E, Poulter BI, Khalil M, Sokaras D, Govind N. Resonant Inelastic X-ray Scattering Calculations of Transition Metal Complexes Within a Simplified Time-Dependent Density Functional Theory Framework. J Chem Theory Comput 2021; 17:3031-3038. [PMID: 33909424 DOI: 10.1021/acs.jctc.1c00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a time-dependent density functional theory (TDDFT) approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state in the context of 4d transition metal systems. These quantities are the necessary ingredients to solve the Kramers-Heisenberg (KH) equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where the solutions of a TDDFT calculation can be used to construct excited-state wavefunctions, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. Thus, the present approach bypasses the need to solve the costly TDDFT quadratic-response equations. We illustrate the applicability of the method to 4d transition metal molecular complexes by calculating the 2p4d RIXS maps of three representative ruthenium complexes and comparing them to experimental results. The method can capture all the experimental features in all three complexes to allow the assignment of the experimental peaks, with relative energies correct to within ∼0.6 eV at the cost of two independent TDDFT calculations.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dimosthenis Sokaras
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
10
|
Ren J, Lin L, Lieutenant K, Schulz C, Wong D, Gimm T, Bande A, Wang X, Petit T. Role of Dopants on the Local Electronic Structure of Polymeric Carbon Nitride Photocatalysts. SMALL METHODS 2021; 5:e2000707. [PMID: 34927893 DOI: 10.1002/smtd.202000707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/02/2020] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride (PCN) is a promising class of materials for solar-to-chemical energy conversion. The increase of the photocatalytic activity of PCN is often achieved by the incorporation of heteroatoms, whose impact on the electronic structure of PCN remains poorly explored. This work reveals that the local electronic structure of PCN is strongly altered by doping with sulfur and iron using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). From XAS at the carbon and nitrogen K-edges, sulfur atoms are found to mostly affect carbon atoms, in contrast to iron doping mostly altering nitrogen sites. In RIXS at the nitrogen K-edge, a vibrational progression, affected by iron doping, is evidenced, which is attributed to a vibronic coupling between excited electrons in nitrogen atoms and C-N stretching modes in PCN heterocycling rings. This work opens new perspectives for the characterization of vibronic coupling in polymeric photocatalysts.
Collapse
Affiliation(s)
- Jian Ren
- Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Lihua Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Klaus Lieutenant
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| | - Christian Schulz
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| | - Deniz Wong
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| | - Thorren Gimm
- Joint Research Group Simulation of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Annika Bande
- Young Investigator Group Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tristan Petit
- Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| |
Collapse
|