1
|
Mahiny M, Lotfi H, Beigmohammadi M, Pooriraj M, Heydari M, Shirzad A, Mahfouzi H, Nazeeruddin MK, Mohd Yusoff ARB, Movla H. Pioneering non-thermal plasma as a defect passivator: a new Frontier in ambient metal halide perovskite synthesis. MATERIALS HORIZONS 2024. [PMID: 39533822 DOI: 10.1039/d4mh01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH4PbI3 into a CH3NH3PbI3 perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. In situ Rietveld refinement analysis reveals minimal PbI2 formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI3 nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.
Collapse
Affiliation(s)
- Milad Mahiny
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Research Institute for Applied Physics and Astronomy, University of Tabriz, 51666-14766, Tabriz, Iran
| | - Hossein Lotfi
- Research Institute for Applied Physics and Astronomy, University of Tabriz, 51666-14766, Tabriz, Iran
| | - Maryam Beigmohammadi
- Department of Optical & Laser Engineering, University of Bonab, 55517-61167, Bonab, Iran
| | - Mehdi Pooriraj
- Department of Semiconductors, Materials and Energy Research Center (MERC), 31787-316, Tehran, Iran
| | - Maryam Heydari
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Western Plasma Technologies Inc., 2727 28 Ave SE, Calgary T2B0L4, Alberta, Canada.
| | - Alireza Shirzad
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Western Plasma Technologies Inc., 2727 28 Ave SE, Calgary T2B0L4, Alberta, Canada.
| | - Hamidreza Mahfouzi
- Department of Biomechanics, Faculty of Biomechanics Engineering, Sahand University of Technology, 51335-1996, Tabriz, Iran
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland.
| | | | - Hossein Movla
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Western Plasma Technologies Inc., 2727 28 Ave SE, Calgary T2B0L4, Alberta, Canada.
| |
Collapse
|
2
|
González J, Danelon JG, Da Silva JLF, Lima MP. Elucidating Black α-CsPbI 3 Perovskite Stabilization via PPD Bication-Conjugated Molecule Surface Passivation: Ab Initio Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39251-39265. [PMID: 39021197 PMCID: PMC11299153 DOI: 10.1021/acsami.4c05092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The cubic α-CsPbI3 phase stands out as one of the most promising perovskite compounds for solar cell applications due to its suitable electronic band gap of 1.7 eV. However, it exhibits structural instability under operational conditions, often transforming into the hexagonal non-perovskite δ-CsPbI3 phase, which is unsuitable for solar cell applications because of the large band gap (e.g., ∼2.9 eV). Thus, there is growing interest in identifying possible mechanisms for increasing the stability of the cubic α-CsPbI3 phase. Here, we report a theoretical investigation, based on density functional theory calculations, of the surface passivation of the α-, γ-, and δ-CsPbI3(100) surfaces using the C6H4(NH3)2 [p-phenylenediamine (PPD)] and Cs species as passivation agents. Our calculations and analyses corroborate recent experimental findings, showing that PPD passivation effectively stabilizes the cubic α-CsPbI3 perovskite against the cubic-to-hexagonal phase transition. The PPD molecule exhibits covalent-dominating bonds with the substrate, which makes it more resistant to distortion than the ionic bonds dominant in perovskite bulks. By contrasting these results with the natural Cs passivation, we highlight the superior stability of the PPD passivation, as evidenced by the negative surface formation energies, unlike the positive values observed for the Cs passivation. This disparity is due to the covalent characteristics of the molecule/surface interaction of PPD, as opposed to the purely ionic interaction seen with the Cs passivation. Notably, the PPD passivation maintains the optoelectronic properties of the perovskites because the electronic states derived from the PPD molecules are localized far from the band gap region, which is crucial for optoelectronic applications.
Collapse
Affiliation(s)
- José
E. González
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - João G. Danelon
- Department
of Physics, Federal University of São
Carlos, 13565-905 São Carlos, SP, Brazil
| | - Juarez L. F. Da Silva
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Matheus P. Lima
- Department
of Physics, Federal University of São
Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
3
|
Inico E, Saetta C, Di Liberto G. Impact of quantum size effects to the band gap of catalytic materials: a computational perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:361501. [PMID: 38830369 DOI: 10.1088/1361-648x/ad53b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The evolution of nanotechnology has facilitated the development of catalytic materials with controllable composition and size, reaching the sub-nanometer limit. Nowadays, a viable strategy for tailoring and optimizing the catalytic activity involves controlling the size of the catalyst. This strategy is underpinned by the fact that the properties and reactivity of objects with dimensions on the order of nanometers can differ from those of the corresponding bulk material, due to the emergence of quantum size effects. Quantum size effects have a deep influence on the band gap of semiconducting catalytic materials. Computational studies are valuable for predicting and estimating the impact of quantum size effects. This perspective emphasizes the crucial role of modeling quantum size effects when simulating nanostructured catalytic materials. It provides a comprehensive overview of the fundamental principles governing the physics of quantum confinement in various experimentally observable nanostructures. Furthermore, this work may serve as a tutorial for modeling the electronic gap of simple nanostructures, highlighting that when working at the nanoscale, the finite dimensions of the material lead to an increase of the band gap because of the emergence of quantum confinement. This aspect is sometimes overlooked in computational chemistry studies focused on surfaces and nanostructures.
Collapse
Affiliation(s)
- Elisabetta Inico
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Clara Saetta
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
4
|
Bai Y, Wu H, Wang D, Liu M, Lu ZH, Ding H. In situcell-scale probing nucleation, growth and evolution of CsPbBr 3nanowires by optical absorption spectroscopy. NANOTECHNOLOGY 2024; 35:305701. [PMID: 38631322 DOI: 10.1088/1361-6528/ad3fc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The growth kinetics of colloidal lead halide perovskite nanomaterials are an integral part of their applications, remains poorly understood due to complex nucleation processes and lack ofin situsize monitoring method. Here we demonstrated that absorption spectra can be used to observein situgrowth processes of ultrathin CsPbBr3nanowires in solution with reference to the effective mass infinite deep square potential well model. By means of this method, we have found that the ultrathin nanowires, fabricated by hot injection method, were firstly formed within one minute. Subsequently, they merge with each other into a thicker structure with increasing reaction time. We revealed that the nucleation, growth, and merging of the CsPbBr3nanowires are determined by the acid concentration and ligand chain length. At lower acidity, the critical nucleation size of the nanowire is smaller, while the shorter the ligand chain length, the faster the merging among the nanowires. Moreover, the merging mode between nanowires changed with their nucleation size. This growth kinetics of CsPbBr3nanowires provides a reference for optimizing the synthesis conditions to obtain the one-dimensional CsPbBr3with desired size, thus enabling accurate control of the nanowire shape.
Collapse
Affiliation(s)
- Yan Bai
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Heqian Wu
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Dengke Wang
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Mei Liu
- Key Laboratory of Smart Drugs Control (Yunnan Police College), Ministry of Education, No. 249 Jiaochang North Road, Kunming 650032, Yunnan Province, People's Republic of China
| | - Zheng-Hong Lu
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Huaiyi Ding
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| |
Collapse
|
5
|
Li Y, Qin M, Wang Y, Li S, Qin Z, Tsang SW, Su CJ, Ke Y, Lu X. Controllable Black-to-Yellow Phase Transition by Tuning the Lattice Symmetry in Perovskite Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303885. [PMID: 37496030 DOI: 10.1002/smll.202303885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Indexed: 07/28/2023]
Abstract
The black-to-yellow phase transition in perovskite quantum dots (QDs) is more complex than in bulk perovskites, regarding the role of surface energy. Here, with the assistance of in situ grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), distinct phase behaviors of cesium lead iodide (CsPbI3 ) QD films under two different temperature profiles-instant heating-up (IHU) and slow heating-up (SHU) is investigated. The IHU process can cause the phase transition from black phase to yellow phase, while under the SHU process, the majority remains in black phase. Detailed studies and structural refinement analysis reveal that the phase transition is triggered by the removal of surface ligands, which switches the energy landscape. The lattice symmetry determines the transition rate and the coexistence black-to-yellow phase ratio. The SHU process allows longer relaxation time for a more ordered QD packing, which helps sustain the lattice symmetry and stabilizes the black phase. Therefore, one can use the lattice symmetry as a general index to monitor the CsPbI3 QD phase transition and finetune the coexistence black-to-yellow phase ratio for niche applications.
Collapse
Affiliation(s)
- Yuhao Li
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Minchao Qin
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Yunfan Wang
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Shiang Li
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Zhaotong Qin
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
Weinberg D, Park Y, Limmer DT, Rabani E. Size-Dependent Lattice Symmetry Breaking Determines the Exciton Fine Structure of Perovskite Nanocrystals. NANO LETTERS 2023. [PMID: 37229762 DOI: 10.1021/acs.nanolett.3c00861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The order of bright and dark excitonic states in lead-halide perovskite nanocrystals is debated. It has been proposed that the Rashba effect, driven by lattice-induced symmetry breaking, causes a bright excitonic ground state. Direct measurements of excitonic spectra, however, show the signatures of a dark ground state, bringing the role of the Rashba effect into question. We use an atomistic theory to model the exciton fine structure of perovskite nanocrystals, accounting for realistic lattice distortions. We calculate optical gaps and excitonic features that compare favorably with experimental works. The exciton fine structure splittings show a nonmonotonic size dependence due to a structural transition between cubic and orthorhombic phases. Additionally, the excitonic ground state is found to be dark with spin triplet character, exhibiting a small Rashba coupling. We additionally explore the effects of nanocrystal shape on the fine structure, clarifying observations on polydisperse nanocrystals.
Collapse
Affiliation(s)
- Daniel Weinberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yoonjae Park
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Liu X, Lee EC. Advancements in Perovskite Nanocrystal Stability Enhancement: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111707. [PMID: 37299610 DOI: 10.3390/nano13111707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Over the past decade, perovskite technology has been increasingly applied in solar cells, nanocrystals, and light-emitting diodes (LEDs). Perovskite nanocrystals (PNCs) have attracted significant interest in the field of optoelectronics owing to their exceptional optoelectronic properties. Compared with other common nanocrystal materials, perovskite nanomaterials have many advantages, such as high absorption coefficients and tunable bandgaps. Owing to their rapid development in efficiency and huge potential, perovskite materials are considered the future of photovoltaics. Among different types of PNCs, CsPbBr3 perovskites exhibit several advantages. CsPbBr3 nanocrystals offer a combination of enhanced stability, high photoluminescence quantum yield, narrow emission bandwidth, tunable bandgap, and ease of synthesis, which distinguish them from other PNCs, and make them suitable for various applications in optoelectronics and photonics. However, PNCs also have some shortcomings: they are highly susceptible to degradation caused by environmental factors, such as moisture, oxygen, and light, which limits their long-term performance and hinders their practical applications. Recently, researchers have focused on improving the stability of PNCs, starting with the synthesis of nanocrystals and optimizing (i) the external encapsulation of crystals, (ii) ligands used for the separation and purification of nanocrystals, and (iii) initial synthesis methods or material doping. In this review, we discuss in detail the factors leading to instability in PNCs, introduce stability enhancement methods for mainly inorganic PNCs mentioned above, and provide a summary of these approaches.
Collapse
Affiliation(s)
- Xuewen Liu
- Department of Nano Science and Technology, Graduate School, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Eun-Cheol Lee
- Department of Nano Science and Technology, Graduate School, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Tsuji M, Sasase M, Iimura S, Kim J, Hosono H. Room-Temperature Solid-State Synthesis of Cs 3Cu 2I 5 Thin Films and Formation Mechanism for Its Unique Local Structure. J Am Chem Soc 2023; 145:11650-11658. [PMID: 37192284 DOI: 10.1021/jacs.3c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Blue-emitting Cs3Cu2I5 has attracted attention owing to its near-unity PL quantum yield and applications in DUV photodetectors and scintillators. Its PL properties originate from the unique local structure around the luminescent center, the [Cu2I5]3- polyhedron iodocuprate anion consisting of the edge-shared CuI3 triangle and the CuI4 tetrahedron dimer, which is isolated by Cs+ ions. We found that solid-state reactions between CsI and CuI occur near room temperature (RT) to form Cs3Cu2I5 and/or CsCu2I3 phases. High-quality thin films of these phases were obtained by the sequential deposition of CuI and CsI by thermal evaporation. We elucidated that the formation of interstitial Cu+ and the antisite of I- at the Cs+ site in the CsI crystal through Cu+ and I- diffusion results in the RT synthesis of Cs3Cu2I5. The unique structure formation of the luminescent center was revealed using a model based on the low packing density of the CsCl-type crystal structure, similar sizes of Cs+ and I- ions, and the high diffusivity of Cu+. The self-aligned patterning of the luminous regions on thin films was demonstrated.
Collapse
Affiliation(s)
- Masatake Tsuji
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Masato Sasase
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Soshi Iimura
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Junghwan Kim
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
9
|
Peltek OO, Talianov PM, Krylova A, Polushkin AS, Anastasova EI, Mikushina DD, Gets D, Zelenkov LE, Khubezhov S, Pushkarev A, Zyuzin MV, Makarov SV. Ligand-free template-assisted synthesis of stable perovskite nanocrystals with near-unity photoluminescence quantum yield within the pores of vaterite spheres. NANOSCALE 2023; 15:7482-7492. [PMID: 37017125 DOI: 10.1039/d3nr00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ligand-free methods for the synthesis of halide perovskite nanocrystals are of great interest because of their excellent performance in optoelectronics and photonics. In addition, template-assisted synthesis methods have become a powerful tool for the fabrication of environmentally stable and bright nanocrystals. Here we develop a novel approach for the facile ligand-free template-assisted fabrication of perovskite nanocrystals with a near-unity absolute quantum yield, which involves CaCO3 vaterite micro- and submicrospheres as templates. We show that the optical properties of the obtained nanocrystals are affected not mainly by the template morphology, but strongly depend on the concentration of precursor solutions, anion and cation ratio, as well as on adding defect-passivating rare-earth dopants. The optimized samples are further tested as infrared radiation visualizers exhibiting promising characteristics comparable to those that are commercially available.
Collapse
Affiliation(s)
- Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Pavel M Talianov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Anna Krylova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Artem S Polushkin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Elizaveta I Anastasova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 197101, Russian Federation
| | - Daria D Mikushina
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Dmitri Gets
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Lev E Zelenkov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Soslan Khubezhov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Anatoly Pushkarev
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
10
|
Scalon L, Freitas FS, Marques FDC, Nogueira AF. Tiny spots to light the future: advances in synthesis, properties, and application of perovskite nanocrystals in solar cells. NANOSCALE 2023; 15:907-941. [PMID: 36629010 DOI: 10.1039/d2nr05043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability. Recently, efforts have been devoted to investigating the effects of quantum confinement in perovskite nanocrystals (PNCs) aiming to fabricate optoelectronic devices based solely on these nanoparticles. In general, the applications are focused on light-emitting diodes, especially because of the high color purity and high fluorescence quantum yield obtained in PNCs. Likewise, they present important characteristics featured for photovoltaic applications, highlighting the possibility of stabilizing photoactive phases that are unstable in their bulk analog, the fine control of the bandgap through size change, low defect density, and compatibility with large-scale deposition techniques. Despite the progress made in the last years towards the improvement in the performance and stability of PNCs-based solar cells, their efficiency is still much lower than that obtained with bulk perovskite, and discussions about upscaling of this technology are scarce. In light of this, we address in this review recent routes towards efficiency improvement and the up-scaling of PNC solar cells, emphasizing synthesis management and strategies for solar cell fabrication.
Collapse
Affiliation(s)
- Lucas Scalon
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| | - Flavio Santos Freitas
- Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais 30421-169, Brazil
| | | | - Ana Flávia Nogueira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
11
|
Lim S, Han S, Kim D, Min J, Choi J, Park T. Key Factors Affecting the Stability of CsPbI 3 Perovskite Quantum Dot Solar Cells: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203430. [PMID: 35700966 DOI: 10.1002/adma.202203430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The power conversion efficiency of CsPbI3 perovskite quantum dot (PQD) solar cells shows increase from 10.77% to 16.2% in a short period owing to advances in material and device design for solar cells. However, the device stability of CsPbI3 PQD solar cells remains poor in ambient conditions, which requires an in-depth understanding of the degradation mechanisms of CsPbI3 PQDs solar cells in terms of both inherent material properties and device characteristics. Along with this analysis, advanced strategies to overcome poor device stability must be conceived. In this review, fundamental mechanisms that cause the degradation of CsPbI3 PQD solar cells are discussed from the material property and device viewpoints. In addition, based on detailed insights into degradation mechanisms in CsPbI3 PQD solar cells, various strategies are introduced to improve the stability of CsPbI3 PQD solar cells. Finally, future perspectives and challenges are presented to achieve highly durable CsPbI3 PQD solar cells. The investigation of the degradation mechanisms and the stability enhancement strategies can pave the way for the commercialization of CsPbI3 PQD solar cells.
Collapse
Affiliation(s)
- Seyeong Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sanghun Han
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Dohyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihyun Min
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Yang RX, McCandler CA, Andriuc O, Siron M, Woods-Robinson R, Horton MK, Persson KA. Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS NANO 2022; 16:19873-19891. [PMID: 36378904 PMCID: PMC9798871 DOI: 10.1021/acsnano.2c08411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 05/30/2023]
Abstract
The recent rise of computational, data-driven research has significant potential to accelerate materials discovery. Automated workflows and materials databases are being rapidly developed, contributing to high-throughput data of bulk materials that are growing in quantity and complexity, allowing for correlation between structural-chemical features and functional properties. In contrast, computational data-driven approaches are still relatively rare for nanomaterials discovery due to the rapid scaling of computational cost for finite systems. However, the distinct behaviors at the nanoscale as compared to the parent bulk materials and the vast tunability space with respect to dimensionality and morphology motivate the development of data sets for nanometric materials. In this review, we discuss the recent progress in data-driven research in two aspects: functional materials design and guided synthesis, including commonly used metrics and approaches for designing materials properties and predicting synthesis routes. More importantly, we discuss the distinct behaviors of materials as a result of nanosizing and the implications for data-driven research. Finally, we share our perspectives on future directions for extending the current data-driven research into the nano realm.
Collapse
Affiliation(s)
- Ruo Xi Yang
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Caitlin A. McCandler
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
| | - Oxana Andriuc
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Liquid
Sunlight Alliance and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Martin Siron
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
| | - Rachel Woods-Robinson
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Matthew K. Horton
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
| | - Kristin A. Persson
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
- Molecular
Foundry, Energy Sciences Area, Lawrence
Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
13
|
Zhang H, Moazzezi P, Ren J, Henderson B, Cordoba C, Yeddu V, Blackburn AM, Saidaminov MI, Paci I, Hughes S, Gordon R. Coupling Perovskite Quantum Dot Pairs in Solution using a Nanoplasmonic Assembly. NANO LETTERS 2022; 22:5287-5293. [PMID: 35767329 DOI: 10.1021/acs.nanolett.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite quantum dots (PQDs) provide a robust solution-based approach to efficient solar cells, bright light emitting devices, and quantum sources of light. Quantifying heterogeneity and understanding coupling between dots is critical for these applications. We use double-nanohole optical trapping to size individual dots and correlate to emission energy shifts from quantum confinement. We were able to assemble a second dot in the trap, which allows us to observe the coupling between dots. We observe a systematic red-shift of 1.1 ± 0.6 meV in the emission wavelength. Theoretical analysis shows that the observed shift is consistent with resonant energy transfer and is unusually large due to moderate-to-large quantum confinement in PQDs. This demonstrates the promise of PQDs for entanglement in quantum information applications. This work enables future in situ control of PQD growth as well as studies of the coupling between small PQD assemblies with quantum information applications in mind.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| | - Parinaz Moazzezi
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, V8P 5C2 Victoria, Canada
| | - Juanjuan Ren
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston K7L 3N6, Canada
| | - Brett Henderson
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
- Quantum Algorithms Institute, Surrey V3T 5X3, Canada
| | - Cristina Cordoba
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, V8P 5C2 Victoria, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria V8P 5C2, Canada
| | - Vishal Yeddu
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
| | - Arthur M Blackburn
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria V8P 5C2, Canada
| | - Makhsud I Saidaminov
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
| | - Irina Paci
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
| | - Stephen Hughes
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston K7L 3N6, Canada
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
14
|
Mahato S, Ghorai A, Mondal A, Srivastava SK, Modak M, Das S, Ray SK. Atomic-Scale Imaging and Nano-Scale Mapping of Cubic α-CsPbI 3 Perovskite Nanocrystals for Inverted Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9711-9723. [PMID: 35133121 DOI: 10.1021/acsami.1c20794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal synthesized cubic α-CsPbI3 perovskite nanocrystals having a smaller lattice constant (a = 6.2315 Å) compared to the standard structure, and nanoscale mapping of their surfaces are reported to achieve superior photovoltaic performance under 45-55% humidity conditions. Atomic scale transmission electron microscopic images have been utilized to probe the precise arrangement of Cs, Pb, and I atoms in a unit cell of α-CsPbI3 NCs, which is well supported by the VESTA structure. Theoretical calculation using density functional theory of our experimental structure reveals the realization of direct band to band transition with a lower band gap, a higher absorption coefficient, and stronger covalent bonding between the Pb and I atoms in the [PbI6]4- octahedral, as compared to reported standard structure. Nanoscale surface mapping using Kelvin probe force microscopy yielding contact potential difference (CPD) and conductive atomic force microscopy for current mapping have been employed on α-CsPbI3 NCs films deposited on different DMSO doped PEDOT:PSS layers. The difference of CPD value under dark and light illumination suggests that the hole injection strongly depends on the interfaces with PEDOT:PSS layer. The carrier transport through grain interiors and grain boundaries in α-CsPbI3 probed by the single-point c-AFM measurements reveal the excellent photosensitivity under the light conditions. Finally, inverted perovskite solar cells, employing α-CsPbI3 NCs film as an absorber layer and PEDOT:PSS layer as a hole transport layer, have been optimized to achieve the highest power conversion efficiency of 10.6%, showing their potential for future earth abundant, low cost, and air stable inverted perovskite photovoltaic devices.
Collapse
Affiliation(s)
- Somnath Mahato
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
| | - Arup Ghorai
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Ajoy Mondal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Mantu Modak
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
| | - Shreyasi Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
15
|
M A G, Rahman A. Phase evolution of all-inorganic perovskite nanowires during its growth from quantum dots. NANOTECHNOLOGY 2021; 33:085706. [PMID: 34753118 DOI: 10.1088/1361-6528/ac37e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
All-inorganic lead-halide perovskites have emerged as an exciting material owing to their excellent optoelectronic properties and high stability over hybrid organometallic perovskites. Nanowires of these materials, in particular, have shown great promise for optoelectronic applications due to their high optical absorption coefficient and low defect state density. However, the synthesis of the most promising alpha-Cesium lead iodide (α-CsPbI3) nanowires is challenging as it is metastable and spontaneously converts to a non-perovskiteδ-phase. The hot-injection method is one of the most facile, well-controlled, and commonly used approaches for synthesizing CsPbX3nanostructures. But the exact mechanism of growing these nanowires in this technique is not clear. Here, we show that the hot-injection method produces photoactive phases of quantum dots (QDs) and nanowires of CsPbBr3,and QDs of CsPbI3, but CsPbI3nanowires are grown in their non-perovskiteδ-phase. Monitoring the nanowire growth during the hot-injection technique and through detailed characterization, we establish that CsPbI3nanowires are formed in the non-perovskite phase from the beginning rather than transforming after its growth from perovskite to a non-perovskite phase. We have discussed a possible mechanism of how non-perovskite nanowires of CsPbI3grow at the expense of photoactive perovskite QDs. Our findings will help to synthesize nanostructures of all-inorganic perovskites with desired phases, which is essential for successful technological applications.
Collapse
Affiliation(s)
- Gokul M A
- Department of Physics, Indian Institute for Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pune-411008, India
| | - Atikur Rahman
- Department of Physics, Indian Institute for Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
16
|
Lin Y, Fan X, Yang X, Zheng X, Huang W, Shangguan Z, Wang Y, Kuo HC, Wu T, Chen Z. Remarkable Black-Phase Robustness of CsPbI 3 Nanocrystals Sealed in Solid SiO 2 /AlO x Sub-Micron Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103510. [PMID: 34636128 DOI: 10.1002/smll.202103510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
This work combines the high-temperature sintering method and atomic layer deposition (ALD) technique, and yields SiO2 /AlOx -sealed γ-CsPbI3 nanocrystals (NCs). The black-phase CsPbI3 NCs, scattered and encapsulated firmly in solid SiO2 sub-micron particles, maintain in black phases against water soaking, ultraviolet irradiation, and heating, exhibiting remarkable phase stability. A new phase-transition route, from γ via β to α phase without transferring into δ phase, has been discovered upon temperature increasing. The phase stability is ascribed to the high pressure exerted by the rigid SiO2 encapsulations, and its condensed amorphous structures that prevent the permeation of H2 O molecules. Nanoscale coating of Al2 O3 thin films, which are deposited on the surface of the CsPbI3 -SiO2 by ALD, enhances the protection against O2 infiltration, greatly elevating the high-temperature stability of CsPbI3 NCs sealed inside, as the samples remain bright after 1-h annealing in air at 400 °C. These fabrication and encapsulation techniques effectively prevent the formation of δ-CsPbI3 under harsh environment, bringing the high-pressure preservation of black-phase CsPbI3 from laboratory to industry toward potential applications in both photovoltaic and fluorescent areas.
Collapse
Affiliation(s)
- Yue Lin
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Fujian Science and Technology Innovation Laboratory for Energy Materials of China, Xiamen, 361005, China
| | - Xiaotong Fan
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Xiao Yang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Xi Zheng
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Weizhi Huang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Zhibin Shangguan
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Yuhan Wang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Hao-Chung Kuo
- Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Tingzhu Wu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Fujian Science and Technology Innovation Laboratory for Energy Materials of China, Xiamen, 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Fujian Science and Technology Innovation Laboratory for Energy Materials of China, Xiamen, 361005, China
| |
Collapse
|
17
|
Zhang X, Huang K, Zhang N, Luo Z, Wang C, Xian L, Jiang F, Li X. Electrochemically Quantifying the Phase Transition of Cesium Lead Halide Perovskite Quantum Dots in Purification. J Phys Chem Lett 2021; 12:11042-11049. [PMID: 34747623 DOI: 10.1021/acs.jpclett.1c02936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A good purification strategy for obtaining high-quality and low-cost perovskite QDs ink requires a complete removal of the impurities but with a minimal phase transition of QDs from the perovskite phases to the nonperovskite δ-phase. This pioneering work reports the electrochemical quantification on the phase transition level of CsPbI3 QDs in purification. Cyclic voltammetry of the purified QDs evidenced the formation of a new product in the purification process, which was demonstrated to be the undesired nonperovskite δ-phase by independent structural analysis. The developed electrochemical methodology further enabled the quantification of the extent of the phase transition of the QDs purified using different strategies by simply analyzing the charge associated with the relevant peaks and allowing optimization of the purification. The latter is of vital importance for commercialization and is an essential step for boosting their device performance.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Kairan Huang
- YangMing Quantum Technology LTD., Shenzhen 518000, China
| | - Nanlin Zhang
- YangMing Quantum Technology LTD., Shenzhen 518000, China
| | - Zufu Luo
- YangMing Quantum Technology LTD., Shenzhen 518000, China
| | - Chengqun Wang
- YangMing Quantum Technology LTD., Shenzhen 518000, China
| | - Longbin Xian
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fuchun Jiang
- Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Sikorska C, Gaston N. Bimetallic superalkali substitution in the CsPbBr 3 perovskite: Pseudocubic phases and tunable bandgap. J Chem Phys 2021; 155:174307. [PMID: 34742223 DOI: 10.1063/5.0067708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Perovskites attract attention as efficient light absorbers for solar cells due to their high-power conversion efficiency (up to 24%). The high photoelectric conversion efficiency is greatly affected by a suitable band structure. Cation substitution can be an effective approach to tune the electronic band structure of lead halide perovskites. In this work, superalkali cations were introduced to replace the Cs+ cation in the CsPbBr3 material. The bimetallic superalkalis (LiMg, NaMg, LiCa, and NaCa) were inserted since they are structurally simple systems and have a strong tendency to lose one electron to achieve a closed-shell cation. The cation substitution in the lead halide perovskite leads to changes in the shape of both valence and conduction bands compared to CsPbBr3. Introducing superalkali cations produces extra electronic states close to the Fermi level, which arise from the formation of alkali earth metal states at the top of the valence band. Our first-principles computations reveal that bimetallic superalkali substitution decreases the bandgap of the perovskite. The bandgaps of MgLi-PbBr3 (1.35 eV) and MgNa-PbBr3 (1.06 eV) are lower than the bandgap of CsPbBr3 (2.48 eV) and within the optimal bandgap (i.e., 1.1-1.4 eV) for single-junction solar cells. Thus, the MgLi-PbBr3 and MgNa-PbBr3 inorganic perovskites are promising candidates for high-efficiency solar cells.
Collapse
Affiliation(s)
- Celina Sikorska
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, A New Zealand Centre of Research Excellence, Wellington, New Zealand
| | - Nicola Gaston
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, A New Zealand Centre of Research Excellence, Wellington, New Zealand
| |
Collapse
|
19
|
Yang RX, Tan LZ. First-Principles Characterization of Surface Phonons of Halide Perovskite CsPbI 3 and Their Role in Stabilization. J Phys Chem Lett 2021; 12:9253-9261. [PMID: 34533320 DOI: 10.1021/acs.jpclett.1c02515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stability of halide perovskites has been a long-standing issue for their real-world application. Approaches to improve stability include nanostructuring, dimensionality reduction, and strain engineering, where surfaces play an important role in the formation of a stable structure. To understand the mechanism we compute the lattice dynamics of the surface of CsPbI3 using density functional theory. We demonstrate, for the first time, that CsPbI3 crystals exhibit surface phonons that are localized on the outermost layers of the slabs, and we perform a complete symmetry characterization including an identification of the Raman/IR active modes. These surface phonons are present in the optically active cubic phase but are absent in the optically inactive "yellow" phase. Furthermore, we show that the surface suppresses bulk instabilities by hardening soft modes of the bulk cubic phase, resulting in phase stabilization and quenching of dynamical disorder. This study is fundamental for understanding the structural behavior of halide perovskite materials with high surface area-to-volume ratios, and for guiding stabilization strategies.
Collapse
Affiliation(s)
- Ruo Xi Yang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Ye J, Byranvand MM, Martínez CO, Hoye RLZ, Saliba M, Polavarapu L. Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angew Chem Int Ed Engl 2021; 60:21636-21660. [PMID: 33730428 PMCID: PMC8518834 DOI: 10.1002/anie.202102360] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Lead-halide perovskites (LHPs), in the form of both colloidal nanocrystals (NCs) and thin films, have emerged over the past decade as leading candidates for next-generation, efficient light-emitting diodes (LEDs) and solar cells. Owing to their high photoluminescence quantum yields (PLQYs), LHPs efficiently convert injected charge carriers into light and vice versa. However, despite the defect-tolerance of LHPs, defects at the surface of colloidal NCs and grain boundaries in thin films play a critical role in charge-carrier transport and nonradiative recombination, which lowers the PLQYs, device efficiency, and stability. Therefore, understanding the defects that play a key role in limiting performance, and developing effective passivation routes are critical for achieving advances in performance. This Review presents the current understanding of defects in halide perovskites and their influence on the optical and charge-carrier transport properties. Passivation strategies toward improving the efficiencies of perovskite-based LEDs and solar cells are also discussed.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish LaboratoryUniversity of Cambridge19, JJ Thomson AvenueCambridgeCB3 0HEUK
| | - Mahdi Malekshahi Byranvand
- Institute for Photovoltaics (ipv)University of StuttgartPfaffenwaldring 4770569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNERIEK5-PhotovoltaikForschungszentrum Jülich52425JülichGermany
| | - Clara Otero Martínez
- CINBIOUniversidade de VigoMaterials Chemistry and Physics GroupDepartment of Physical ChemistryCampus Universitario Lagoas, Marcosende36310VigoSpain
| | - Robert L. Z. Hoye
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Michael Saliba
- Institute for Photovoltaics (ipv)University of StuttgartPfaffenwaldring 4770569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNERIEK5-PhotovoltaikForschungszentrum Jülich52425JülichGermany
| | - Lakshminarayana Polavarapu
- CINBIOUniversidade de VigoMaterials Chemistry and Physics GroupDepartment of Physical ChemistryCampus Universitario Lagoas, Marcosende36310VigoSpain
| |
Collapse
|
21
|
Matuhina A, Grandhi GK, Liu M, Smått JH, Viswanath NSM, Ali-Löytty H, Lahtonen K, Vivo P. Octahedral distortion driven by CsPbI 3 nanocrystal reaction temperature - the effects on phase stability and beyond. NANOSCALE 2021; 13:14186-14196. [PMID: 34477700 DOI: 10.1039/d1nr04071e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) suffer from a known transformation at room temperature from their red-emitting (black) to non-emitting (yellow) phase, induced by the tilting of PbI6 octahedra. While the reported attempts to stabilize CsPbI3 NCs mainly involve Pb2+-site doping as well as compositional and/or NC surface engineering, the black phase stability in relation only to the variation of the reaction temperature of CsPbI3 NCs is surprisingly overlooked. We report a holistic study of the phase stability of CsPbI3 NCs, encompassing dispersions, films, and even devices by tuning the hot-injection temperature between 120-170 °C. Our findings suggest that the transition from the black to the yellow phase occurs after over a month for NCs synthesized at 150 °C (150@NCs). Structural refinement studies attribute the enhanced stability of 150@NCs to their observed lowest octahedral distortion. The 150@NCs also lead to stable unencapsulated solar cells with unchanged performance upon 26 days of shelf storage in dry air. Our study underlines the importance of scrutinizing synthesis parameters for designing stable perovskite NCs towards long-lasting optoelectronic devices.
Collapse
Affiliation(s)
- Anastasia Matuhina
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ding C, Chen X, Zhang T, Zhou C, Liu X, Wang J, Lin J, Chen X. Electrochemical synthesis of annealing-free and highly stable black-phase CsPbI 3 perovskite. Chem Commun (Camb) 2021; 57:8981-8984. [PMID: 34486627 DOI: 10.1039/d1cc03661k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All-inorganic CsPbI3 halide perovskite has become a hot research topic for applications in next-generation optoelectronic devices. However, the main limitations are the high-temperature synthesis and poor phase stability. In this study, we demonstrate a unique solution-phase strategy for the low-temperature preparation of black-phase CsPbI3 by in situ electrochemistry. By controllable adjustment of the electrochemical growth process, annealing-free black-phase CsPbI3 can be synthesized. The black-phase CsPbI3 showed high-purity red photoluminescence at approximately 690 nm with ultra-high environmental stability for up to 11 days at a high relative humidity of 70%. The underlying mechanisms of the formation of the highly stable black-phase CsPbI3 at room temperature have been discussed in this study. The results provide a new platform for the large scale, low-temperature, and convenient synthesis of black-phase CsPbI3 perovskite.
Collapse
Affiliation(s)
- Chuyun Ding
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xi Chen
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Tianju Zhang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. .,Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaocheng Zhou
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. .,State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Liu
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jun Wang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. .,Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Jia Lin
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
23
|
Smart TJ, Takenaka H, Pham TA, Tan LZ, Zhang JZ, Ogitsu T, Ping Y. Enhancing Defect Tolerance with Ligands at the Surface of Lead Halide Perovskites. J Phys Chem Lett 2021; 12:6299-6304. [PMID: 34227805 DOI: 10.1021/acs.jpclett.1c01243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High defect tolerance has been considered a primary reason for the long charge carrier lifetime and high photoluminescence quantum yield in bulk lead halide perovskites (LHPs). On the other hand, surface defects play a critical role in determining charge carrier dynamics and optical properties, especially for LHP nanocrystals and quantum dots. Understanding the nature of surface defects and developing strategy for their effective passivation are thus of strong interest. Focusing on a prototypical LHP, CsPbBr3, our work uses first-principles calculations to reveal that interstitial sites and antisites can have lower formation energies when they form at the surface while simultaneously creating deep trap states within the bandgap. Meanwhile, the formation of halide vacancies is energetically less favorable. On the basis of a new surface defect model, we demonstrate the explicit role of molecular ligands in passivating these defects, which eliminate trap states in favor of shallow states and enhance photoluminescence.
Collapse
Affiliation(s)
- Tyler J Smart
- Department of Physics, University of California, Santa Cruz, California 95064, United States
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Hiroyuki Takenaka
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
24
|
Ye J, Byranvand MM, Martínez CO, Hoye RLZ, Saliba M, Polavarapu L. Defect Passivation in Lead‐Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Junzhi Ye
- Cavendish Laboratory University of Cambridge 19, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Mahdi Malekshahi Byranvand
- Institute for Photovoltaics (ipv) University of Stuttgart Pfaffenwaldring 47 70569 Stuttgart Germany
- Helmholtz Young Investigator Group FRONTRUNNER IEK5-Photovoltaik Forschungszentrum Jülich 52425 Jülich Germany
| | - Clara Otero Martínez
- CINBIO Universidade de Vigo Materials Chemistry and Physics Group Department of Physical Chemistry Campus Universitario Lagoas, Marcosende 36310 Vigo Spain
| | - Robert L. Z. Hoye
- Department of Materials Imperial College London Exhibition Road London SW7 2AZ UK
| | - Michael Saliba
- Institute for Photovoltaics (ipv) University of Stuttgart Pfaffenwaldring 47 70569 Stuttgart Germany
- Helmholtz Young Investigator Group FRONTRUNNER IEK5-Photovoltaik Forschungszentrum Jülich 52425 Jülich Germany
| | - Lakshminarayana Polavarapu
- CINBIO Universidade de Vigo Materials Chemistry and Physics Group Department of Physical Chemistry Campus Universitario Lagoas, Marcosende 36310 Vigo Spain
| |
Collapse
|
25
|
Yang Y, Hou C, Liang TX. Energetic and electronic properties of CsPbBr 3 surfaces: a first-principles study. Phys Chem Chem Phys 2021; 23:7145-7152. [PMID: 33876080 DOI: 10.1039/d0cp04893c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface properties of all-inorganic halide perovskites play a crucial role in determining optoelectronic performance of these materials. We investigate the surface energies and electronic structures of cubic CsPbBr3 surfaces systematically using density functional theory (DFT) methods. We calculate the surface phase diagrams of low-index surfaces of CsPbBr3, i.e., (100), (110), (111) surfaces. We found that nonpolar (100) surfaces are more stable than polar (110) and (111) surfaces. The nonpolar CsBr-terminated (100) surface shows the best stability, which is attributed to the effect of surface relaxation and high ionicity of the surface layer. The electronic structures reveal that charge transfer to compensate the polarity raises the energy of polar surfaces, which makes polar surfaces unstable. Furthermore, we found that the modulation of surface chemical composition provides an effective way to compensate polarity and thus make polar surfaces of CsPbBr3 stable. Our results provide physical insights into understanding and further enhancing the surface stability of all-inorganic halide perovskites. This would be helpful in promoting the advancement of all-inorganic halide perovskite-based materials and devices.
Collapse
Affiliation(s)
- Yi Yang
- College of Rare Earths and Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China.
| | | | | |
Collapse
|
26
|
Kazes M, Udayabhaskararao T, Dey S, Oron D. Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out. Acc Chem Res 2021; 54:1409-1418. [PMID: 33570394 PMCID: PMC8023572 DOI: 10.1021/acs.accounts.0c00712] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The rediscovery
of the halide perovskite class of compounds and,
in particular, the organic and inorganic lead halide perovskite (LHP)
materials and lead-free derivatives has reached remarkable landmarks
in numerous applications. First among these is the field of photovoltaics,
which is at the core of today’s environmental sustainability
efforts. Indeed, these efforts have born fruit, reaching to date a
remarkable power conversion efficiency of 25.2% for a double-cation
Cs, FA lead halide thin film device. Other applications include light
and particle detectors as well as lighting. However, chemical and
thermal degradation issues prevent perovskite-based devices and particularly
photovoltaic modules from reaching the market. The soft ionic nature
of LHPs makes these materials susceptible to delicate changes in the
chemical environment. Therefore, control over their interface properties
plays a critical role in maintaining their stability. Here we focus
on LHP nanocrystals, where surface termination by ligands determines
not only the stability of the material but also the crystallographic
phase and crystal habit. A surface analysis of nanocrystal interfaces
revealed the involvement of Brønsted type acid–base equilibrium
in the modification of the ligand moieties present, which in turn
can invoke dissolution and recrystallization into the more favorable
phase in terms of minimization of the surface energy. A large library
of surface ligands has already been developed showing both good chemical
stability and good electronic surface passivation, resulting in near-unity
emission quantum yields for some materials, particularly CsPbBr3. However, most of those ligands have a large organic tail
hampering charge carrier transport and extraction in nanocrystal-based
solid films. The unique perovskite structure that allows ligand
substitution
in the surface A (cation) sites and the soft ionic nature is expected
to allow the accommodation of large dipoles across the perovskite
crystal. This was shown to facilitate electron transfer across a molecular
linked single-particle junction, creating a large built-in field across
the junction nanodomains. This strategy could be useful for implementing
LHP NCs in a p–n junction photovoltaic configuration as well
as for a variety of electronic devices. A better understanding of
the surface propeties of LHP nanocrystals will also enable better
control of their growth on surfaces and in confined volumes, such
as those afforded by metal–organic frameworks, zeolites, or
chemically patterened surfaces such as anodic alumina, which have
already been shown to significantly alter the properties of in-situ-grown
LHP materials.
Collapse
Affiliation(s)
- Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thumu Udayabhaskararao
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Swayandipta Dey
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
27
|
Baranov D, Fieramosca A, Yang RX, Polimeno L, Lerario G, Toso S, Giansante C, Giorgi MD, Tan LZ, Sanvitto D, Manna L. Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS NANO 2021; 15:650-664. [PMID: 33350811 DOI: 10.1021/acsnano.0c06595] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.
Collapse
Affiliation(s)
- Dmitry Baranov
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Ruo Xi Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Dipartimento di Matematica e Fisica "E. de Giorgi", Università Del Salento, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Giovanni Lerario
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Stefano Toso
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, Brescia 25121, Italy
| | - Carlo Giansante
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liberato Manna
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
28
|
Di Liberto G, Fatale O, Pacchioni G. Role of surface termination and quantum size in α-CsPbX3 (X = Cl, Br, I) 2D nanostructures for solar light harvesting. Phys Chem Chem Phys 2021; 23:3031-3040. [DOI: 10.1039/d0cp06245f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Quantum confinement of CsPbBr3 nanoplatelets.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali
- Università di Milano – Bicocca
- 20125 Milano
- Italy
| | - Ornella Fatale
- Dipartimento di Scienza dei Materiali
- Università di Milano – Bicocca
- 20125 Milano
- Italy
- Università di Pisa
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali
- Università di Milano – Bicocca
- 20125 Milano
- Italy
| |
Collapse
|
29
|
Affiliation(s)
- Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|