1
|
Zhao XG, Zhao YX, He SG. Reactivity of Atomic Oxygen Radical Anions in Metal Oxide Clusters. Chempluschem 2024:e202400085. [PMID: 39161047 DOI: 10.1002/cplu.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Atomic oxygen radical anion (O⋅-) represents an important type of reactive centre that exists in both chemical and biological systems. Gas-phase atomic clusters can be studied under isolated and well controlled conditions. Studies of O⋅--containing clusters in the gas-phase provide a unique strategy to interpret the chemistry of O⋅- radicals at a strictly molecular level. This review summarizes the research progresses made since 2013 for the reactivity of O⋅- radicals in the atomically precise metal oxide clusters including negatively charged, nanosized, and neutral heteronuclear metal clusters benefitting from the development of advanced experimental techniques. New electronic and geometric factors to control the reactivity and product selectivity of O⋅- radicals under dark and photo-irradiation conditions have been revealed. The detailed mechanisms of O⋅- generation have been discussed for the reaction systems of nanosized and heteroatom-doped metal oxide clusters. The catalytic reactions mediated by the O⋅- radicals in metal clusters have also been successfully established and the microscopic mechanisms about the dynamic generation and depletion of O⋅- radicals have been clearly understood. The studies of O⋅- containing metal oxide clusters in the gas-phase provided new insights into the chemistry of reactive oxygen species in related condensed-phase systems.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Hu J, Xing X, Wang X. Formation of Delocalized Linear M-B-M Covalent Bonds: A Combined Experimental and Theoretical Study of BM 2(CO) 8+ (M = Co, Rh, Ir) Complexes. Inorg Chem 2024; 63:13459-13467. [PMID: 38982873 DOI: 10.1021/acs.inorgchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Investigations of transition-metal boride clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The geometric structures and bonding features of heteronuclear boron-containing transition metal carbonyl cluster cations BM(CO)6+ and BM2(CO)8+ (M = Co, Rh, and Ir) are studied by a combination of the infrared photodissociation spectroscopy and density functional calculations at B3LYP/def2-TZVP level. The completely coordinated BM2(CO)8+ complexes are characterized as a sandwich structure composed of two staggered M(CO)4 fragments and a boron cation, featuring a D3d symmetry and 1Eg electronic ground state as well as metal-anchored carbonyls in an end-on manner. In conjunction with theoretical calculations, multifold metal-boron-metal bonding interactions in BM2(CO)8+ complexes involving the filled d orbitals of the metals and the empty p orbitals of the boron cation were unveiled, namely, one σ-type M-B-M bond and two π-type M-B-M bonds. Accordingly, the BM2(CO)8+ complexes can be described as a linear conjugated (OC)4M═B═M(CO)4 skeleton with a formal B-M bond index of 1.5. The three delocalized d-p-d covalent bonds render compensation for the electron deficiency of the cationic boron center and endow both metal centers with the favorable 18-electron structure, thus contributing much to the overall structural stability of the BM2(CO)8+ cations. As a comparison, the saturated BRh(CO)6+ and BIr(CO)6+ complexes are determined to be a doublet Cs-symmetry structure with an unbridged (OC)2B-M(CO)4 pattern, involving a two-center σ-type (OC)2B → M(CO)4+ dative single bond along with a weak covalent B-M half bond. This work offers important insight into the structure and bonding of late transition metal boride carbonyl cluster cations.
Collapse
Affiliation(s)
- Jin Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaopeng Xing
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuefeng Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
3
|
Zhang Z, Ling Z, Ju B, Li G, Yuan Q, Cheng L, Xie H, Jiang L. Observation of the Transition from Triple Bonds to Single Bonds between Ru-Ge Bonding in RuGeO(CO) n- ( n = 3-5). J Phys Chem Lett 2024; 15:6952-6957. [PMID: 38940497 DOI: 10.1021/acs.jpclett.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
This work reports the observation and characterization of heterobinuclear transition-metal main-group metal oxide carbonyl complex anions, RuGeO(CO)n- (n = 3-5), by combining mass-selected photoelectron velocity map imaging spectroscopy and quantum chemistry calculations. The experimentally determined vertical electron detachment energy of RuGeO(CO)3- surpasses those of RuGeO(CO)4- and RuGeO(CO)5-, which is attributed to distinctive bonding features. RuGeO(CO)3- manifests one covalent σ and two Ru-to-Ge dative π bonds, contrasting with the sole covalent σ bond present in RuGeO(CO)4- and RuGeO(CO)5-. Unpaired spin density distribution analysis reveals a 17-electron configuration at the Ru center in RuGeO(CO)3- and an 18-electron configuration in RuGeO(CO)4- and RuGeO(CO)5-. This work closes a gap in the quantitative physicochemical characterization of heteronuclear oxide carbonyl complexes, enhancing our insights into catalytic processes of CO/GeO on the metal surface at the molecular level.
Collapse
Affiliation(s)
- Ziheng Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zicheng Ling
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qinqin Yuan
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Longjiu Cheng
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Hu J, Wang X. Infrared Photodissociation Spectroscopy of Dinuclear Vanadium-Group Metal Carbonyl Complexes: Diatomic Synergistic Activation of Carbon Monoxide. Molecules 2024; 29:2831. [PMID: 38930895 PMCID: PMC11206424 DOI: 10.3390/molecules29122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The geometric structure and bonding features of dinuclear vanadium-group transition metal carbonyl cation complexes in the form of VM(CO)n+ (n = 9-11, M = V, Nb, and Ta) are studied by infrared photodissociation spectroscopy in conjunction with density functional calculations. The homodinuclear V2(CO)9+ is characterized as a quartet structure with CS symmetry, featuring two side-on bridging carbonyls and an end-on semi-bridging carbonyl. In contrast, for the heterodinuclear VNb(CO)9+ and VTa(CO)9+, a C2V sextet isomer with a linear bridging carbonyl is determined to coexist with the lower-lying CS structure analogous to V2(CO)9+. Bonding analyses manifest that the detected VM(CO)9+ complexes featuring an (OC)6M-V(CO)3 pattern can be regarded as the reaction products of two stable metal carbonyl fragments, and indicate the presence of the M-V d-d covalent interaction in the CS structure of VM(CO)9+. In addition, it is demonstrated that the significant activation of the bridging carbonyls in the VM(CO)9+ complexes is due in large part to the diatomic cooperation of M-V, where the strong oxophilicity of vanadium is crucial to facilitate its binding to the oxygen end of the carbonyl groups. The results offer important insight into the structure and bonding of dinuclear vanadium-containing transition metal carbonyl cluster cations and provide inspiration for the design of active vanadium-based diatomic catalysts.
Collapse
Affiliation(s)
| | - Xuefeng Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;
| |
Collapse
|
5
|
Hu J, Xin K, Lin X, Xing X, Wang X. Infrared Photodissociation Spectroscopy of Mass-Selected Dinuclear Transition Metal Boride Carbonyl Cluster Cations. J Phys Chem A 2024; 128:2049-2057. [PMID: 38471016 DOI: 10.1021/acs.jpca.3c07819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The transition-metal-boron bonding interactions and geometric structures of heterodinuclear transition metal carbonyl cluster cations BM(CO)n+ (M = Co, Ni, and Cu) are studied by a combination of the infrared photodissociation spectroscopy and density functional theory calculations at the B3LYP/def2-TZVP level. The BCu(CO)5+ and BCo(CO)6+ cations are characterized as an (CO)2B-M(CO)3/4+ structure involving an σ-type (OC)2B → M(CO)3,4+ dative bonding with end-on carbonyls, while for BNi(CO)5,6+ complexes with a bridged carbonyl, a 3c-2e bond involving the 5σ electrons of the bridged carbonyl and an electron-sharing bond between the B(CO)2 fragment and the Ni(CO)2,3+ subunits were revealed. Moreover, the fundamental driving force of the exclusive existence of a bridged carbonyl group in the boron-nickel complexes has been demonstrated to stem from the desire of the B and Ni centers for the favorable 8- and 18-electron structures.
Collapse
Affiliation(s)
- Jin Hu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ke Xin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuan Lin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaopeng Xing
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
Chi C, Yang Z, Zeng B, Qin Q, Meng L. Spectroscopic characterization of heteronuclear iron-chromium carbonyl cluster anions. Phys Chem Chem Phys 2023; 25:32173-32183. [PMID: 37986618 DOI: 10.1039/d3cp04248k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Infrared photodissociation spectroscopy has been used to investigate CrFe(CO)n- (n = 4-9) clusters in the gas phase. Comparison of the observed spectra in the carbonyl stretching frequency region with those predicted for low-lying isomers by DFT calculations showed that the observed CrFe(CO)n- (n = 4-8) clusters could be characterized to have Cr-Fe bonded (OC)4Fe-Cr(CO)n-4 structures. The coexistence of isomers with the (OC)Fe-Cr(CO)5 and (OC)3Fe-Cr(CO)4 structures was also observed for CrFe(CO)6- and CrFe(CO)7- anions, respectively. The CrFe(CO)n- (n = 4-8) complexes were strongly bonded systems. The CrFe(CO)8- complex was a coordination-saturated cluster, and the CrFe(CO)9- anion was characterized to contain a CrFe(CO)8- core tagged by one CO molecule. Bonding analysis revealed that the Cr-Fe bonds in the CrFe(CO)n- (n = 4-8) clusters were predominantly σ-type single bonds. The iron center in the Fe(CO)4 moiety and the chromium center in the Cr(CO)5 moiety fulfilled the 18-electron configuration for the CrFe(CO)n- (n = 4-6) clusters. As in the CrFe(CO)n- (n = 7, 8) complexes, the iron center in the Fe(CO)4 moiety exhibited a 17-electron configuration, while the chromium center in the Cr(CO)4 moiety exhibited a 16-electron configuration. These findings provide valuable insights into the structure and bonding mechanism of heterometallic carbonyl clusters.
Collapse
Affiliation(s)
- Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China.
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Zhixiang Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Bin Zeng
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Qifeng Qin
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Luyan Meng
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China
| |
Collapse
|
7
|
Fielicke A. Probing the binding and activation of small molecules by gas-phase transition metal clusters via IR spectroscopy. Chem Soc Rev 2023. [PMID: 37162518 DOI: 10.1039/d2cs00104g] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolated transition metal clusters have been established as useful models for extended metal surfaces or deposited metal particles, to improve the understanding of their surface chemistry and of catalytic reactions. For this objective, an important milestone has been the development of experimental methods for the size-specific structural characterization of clusters and cluster complexes in the gas phase. This review focusses on the characterization of molecular ligands, their binding and activation by small transition metal clusters, using cluster-size specific infrared action spectroscopy. A comprehensive overview and a critical discussion of the experimental data available to date is provided, reaching from the initial results obtained using line-tuneable CO2 lasers to present-day studies applying infrared free electron lasers as well as other intense and broadly tuneable IR laser sources.
Collapse
Affiliation(s)
- André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
8
|
Jin X, Wang G, Zhou M. Mg(I)-Fe(-II) and Mg(0)-Mg(I) covalent bonding in the Mg nFe(CO) 4- ( n = 1, 2) anion complexes: an infrared photodissociation spectroscopic and theoretical study. Phys Chem Chem Phys 2023; 25:7697-7703. [PMID: 36866694 DOI: 10.1039/d2cp05719k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Heteronuclear magnesium-iron carbonyl anion complexes MgFe(CO)4- and Mg2Fe(CO)4- are produced in the gas phase and are detected by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The geometric structures and the metal-metal bonding are discussed with the aid of quantum chemical calculations. Both complexes are characterized to have a doublet electronic ground state with C3v symmetry containing a Mg-Fe bond or a Mg-Mg-Fe bonding unit. Bonding analyses indicate that each complex involves an electron-sharing Mg(I)-Fe(-II) σ bond. The Mg2Fe(CO)4- complex involves a relatively weak covalent Mg(0)-Mg(I) σ bond.
Collapse
Affiliation(s)
- Xiaoyang Jin
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University Shanghai, Shanghai 200438, China.
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University Shanghai, Shanghai 200438, China.
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University Shanghai, Shanghai 200438, China.
| |
Collapse
|
9
|
Yang J, Zhang J, Du S, Li G, Zou J, Jing Q, Xie H, Jiang L. Photoelectron imaging spectroscopic signatures of CO activation by the heterotrinuclear titanium-nickel clusters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Zhou Y, Liu H, Jin X, Xing X, Wang X, Wang G, Zhou M. Significant π Bonding in Coinage Metal Complexes OCTMCCO- from Infrared Photodissociation Spectroscopy and Theoretical Calculations. J Chem Phys 2022; 157:014302. [DOI: 10.1063/5.0099789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of coinage metal complexes in the form of TMC(CO)n- (TM=Cu, Ag, Au; n = 0-3) were generated using a laser ablation-supersonic expansion ion source in the gas phase. Mass-selected infrared photodissociation spectroscopy in conjunction with quantum chemical calculations indicated that the TMC(CO)3- complexes contain a linear OCTMCCO- core anion. Bonding analyses suggest that the linear OCTMCCO- anions are better described as the bonding interactions between a singlet ground state TM+ metal cation and the OC/CCO2- ligands in the singlet ground state. Besides the strong ligands to metal σ donation bonding components, the π-bonding components also contribute significantly to the metal-ligands bonding due to the synergetic effects of the CO and CCO2- ligands. The strengths of the bonding of the three metals show a V-shaped trend in which the second-row transition metal Ag exhibits the weakest interactions whereas the third-row transition metal Au has the strongest interactions due to the relativistic effects.
Collapse
Affiliation(s)
| | | | | | - Xiaopeng Xing
- School of Chemical Science and Engineering, Tongji University, China
| | | | | | | |
Collapse
|
11
|
Xu Y, Wei ZY, Li W, Zhang J, Lu T, Jin Y, Zheng WJ, Feng G. Structures and hydrogen bonding of 1,7-dioxaspiro[5.5]undecane and its hydrates. Phys Chem Chem Phys 2021; 23:19289-19296. [PMID: 34525146 DOI: 10.1039/d1cp02964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformations of 1,7DSU and its stepwise solvation by up to 5 water molecules were explored using supersonic-jet Fourier transform microwave spectroscopy with the supplement of theoretical calculations. Experimentally, the rotational spectra of the most stable structures of the monomer, monohydrate and dihydrate were observed and assigned. The characteristics of the stability and intermolecular interaction topologies of the 1,7DSU monomer and its hydrated clusters were obtained by CREST conformational sampling followed by B3LYP-D3(BJ)/def2-TZVP geometrical optimizations and MP2/aug-cc-pVTZ single-point energy calculations. The first water molecule links to the 1,7DSU monomer through an OwH⋯O hydrogen bond. The water molecules tend to aggregate with each other and form cyclic structures for the n = 2-5 clusters. The interactions between water and the 1,7DSU monomer as well as those between water and water were revealed. The analyses of non-covalent interactions and the natural bond orbital suggest that the OwH⋯O1,7DSU, OwH⋯Ow, and CH⋯Ow hydrogen bonds play a prominent role in structural stability.
Collapse
Affiliation(s)
- Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| |
Collapse
|
12
|
Zhou M, Frenking G. Transition-Metal Chemistry of the Heavier Alkaline Earth Atoms Ca, Sr, and Ba. Acc Chem Res 2021; 54:3071-3082. [PMID: 34264062 DOI: 10.1021/acs.accounts.1c00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusAlkaline earth elements beryllium, magnesium, calcium, strontium, and barium with an ns2 valence-shell configuration are usually classified as main-group elements that belong to the s-block atoms. For a long time, the elements were considered to be rather chemically uninteresting atomic species due to preconceived ideas about bonding, structure, and reactivity. They typically use the two ns valence electrons in forming ionic salt compounds with the metal in a formal oxidation state of +2. For the heavier alkaline earth atoms, calcium, strontium, and barium, their (n - 1)d atomic orbitals (AOs) are empty but lie close in energy to the valence np orbitals. Earlier theoretical investigations have already suggested that these elements can employ the (n - 1)d AOs to some extent to form polar bonds in divalent species in which the alkaline earth metal centers are sufficiently positively charged. The d orbital involvement increases from Ca to Sr and markedly in Ba. Thus, barium has been termed an honorary transition metal.Recently, molecular complexes of Ca, Sr, and Ba were prepared in the gas phase and in a low-temperature solid neon matrix and were detected by infrared spectroscopy. An analysis of the electronic structures of [Ba(CO)]+, [Ba(CO)]-, saturated coordinated octacarbonyls [M(CO)8] and [M(CO)8]+, isoelectronic dinitrogen complexes [M(N2)8] and [M(N2)8]+, and the tribenzene complexes [M(Bz)3] (M = Ca, Sr, Ba) revealed that the metal-ligand bonding can be straightforwardly discussed using the traditional Dewar-Chatt-Duncanson (DCD) model as in classical transition-metal complexes. The metal-ligand bonds can be explained with metal → ligand π back donation from occupied metal (n - 1)d AOs to vacant antibonding π molecular orbitals of the ligands with concomitant σ donation from occupied MOs of the ligands to vacant metal d orbitals of the alkaline earth atoms. In addition, heteronuclear Ca-Fe carbonyl cation complexes were also produced in the gas phase. Bonding analysis of the coordination saturated [CaFe(CO)10]+ complex implies that it can be described by the bonding interactions between a [Ca(CO)6]2+ fragment and an [Fe(CO)4]- anion fragment in forming a Fe → Ca d-d dative bond. The nature of metal-ligand and metal-metal bonding was quantitatively elucidated by the energy decomposition analysis in conjunction with the natural orbitals for the chemical valence (EDA-NOCV) method, which indicate that the (n - 1)d AOs of the alkaline earth metals are the dominant orbitals participating in the covalent interactions, just as typical transition metals. The results indicate that the heavier alkaline earth elements have a much richer covalent chemistry than previously thought. These findings, along with earlier studies, suggest that the heavier alkaline earth atoms Ca, Sr, and Ba should be classified as transition metals rather than main group atoms in the periodic table of the elements. This interesting structural chemistry, together with some recently reported examples of spectacular reactivity, establishes these elements as exciting and promising research targets in current research.
Collapse
Affiliation(s)
- Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
- Fachbereich Chemie, Philipps-Universität Marburg, D-35043 Marburg, Germany
| |
Collapse
|
13
|
Jin J, Wang G, Zhou M. Infrared Spectroscopy and Bonding of the B(NN) 3+ and B 2(NN) 3,4+ Cation Complexes. J Phys Chem A 2021; 125:6246-6253. [PMID: 34254811 DOI: 10.1021/acs.jpca.1c05243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The boron-dinitrogen cation complexes B(NN)3+ and B2(NN)3,4+ are produced in the gas phase and are studied by infrared photodissociation spectroscopy in the N-N stretching vibrational frequency region. The geometric and electronic structures are determined by comparison of the experimental spectra with density functional theory calculations. The B(NN)3+ cation is characterized to have a closed-shell singlet ground state with planar D3h symmetry. The B2(NN)3+ cation is determined to have a B═B bonded (NN)2BBNN structure with C2v symmetry. Two isomers of the B2(NN)4+ cation contribute to the experimental spectrum. One is a N2-tagged complex involving a B2(NN)3+ core ion. Another one is a B-B bonded B2(NN)4+ complex with a planar D2h structure. Bonding analyses reveal that the B-NN interactions in these complexes come mainly from covalent orbital interactions, with the NN → B σ donation being stronger than the B → NN π back-donation.
Collapse
Affiliation(s)
- Jiaye Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Jin X, Bai Y, Zhou Y, Wang G, Zhao L, Zhou M, Frenking G. Highly Coordinated Heteronuclear Calcium–Iron Carbonyl Cation Complexes [CaFe(CO)
n
]
+
(
n
=5–12) with d−d Bonding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyang Jin
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Yuna Bai
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 China
| | - Yangyu Zhou
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Guanjun Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 China
| | - Mingfei Zhou
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Gernot Frenking
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 China
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|
15
|
Jin X, Bai Y, Zhou Y, Wang G, Zhao L, Zhou M, Frenking G. Highly Coordinated Heteronuclear Calcium-Iron Carbonyl Cation Complexes [CaFe(CO) n ] + (n=5-12) with d-d Bonding. Angew Chem Int Ed Engl 2021; 60:13865-13870. [PMID: 33826215 PMCID: PMC8251804 DOI: 10.1002/anie.202103267] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/01/2021] [Indexed: 12/31/2022]
Abstract
Heteronuclear calcium-iron carbonyl cation complexes in the form of [CaFe(CO)n ]+ (n=5-12) are produced in the gas phase. Infrared photodissociation spectroscopy in conjunction with quantum chemical calculations confirm that the n=10 complex is the coordination saturated ion where a Fe(CO)4 fragment is bonded with a Ca(CO)6 fragment through two side-on bridging carbonyl ligands. Bonding analysis indicates that it is best described by the bonding interactions between a [Ca(CO)6 ]2+ dication and an [Fe(CO)4 ]- anion forming a Fe→Ca d-d dative bond in the [(CO)6 Ca-Fe(CO)4 ]+ structure, which enriches the pool of experimentally observed complexes of calcium that mimic transition metal compounds. The molecule is the first example of a heteronuclear carbonyl complex featuring a d-d bond between calcium and a transition metal.
Collapse
Affiliation(s)
- Xiaoyang Jin
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438China
| | - Yuna Bai
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Yangyu Zhou
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438China
| | - Guanjun Wang
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438China
| | - Lili Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Mingfei Zhou
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438China
| | - Gernot Frenking
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| |
Collapse
|
16
|
Meng L, Liu S, Qin Q, Zeng B, Luo Z, Chi C. Infrared photodissociation spectroscopy of heteronuclear group 15 metal-iron carbonyl cluster anions A mFe(CO) n- (A = Sb, Bi; m, n = 2, 3). Phys Chem Chem Phys 2021; 23:12668-12678. [PMID: 34036991 DOI: 10.1039/d1cp00583a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteronuclear group 15 metal-iron carbonyl cluster complexes of AmFe(CO)n- (A = Sb, Bi; m, n = 2-3) were generated in the gas phase and studied by infrared photodissociation spectroscopy in the carbonyl stretching region. Their structures were determined by comparing the experimental spectra with predicted spectra derived from DFT calculations at the B3LYP and BP86 levels. All of the AmFe(CO)n- cluster anions were determined to have Fe(CO)n- fragments with all of the CO ligands terminally bonded to the iron center, and they can be regarded as being formed via the interactions of the neutral group 15 metal clusters with the Fe(CO)n- fragments. Bonding analyses indicated that each A2Fe(CO)n- (n = 2, 3) cluster anion contained two A-Fe single bonds and one A-A double bond. Each A3Fe(CO)n- (n = 2, 3) cluster anion involved three A-Fe single bonds and three A-A single bonds. There is an isolobal relationship between the Fe(CO)3- group and the group 15 atoms. The substitution of an Fe(CO)3- group in place of one A atom in the tetrahedral A4 molecule resulted in an A3Fe(CO)3- cluster anion with the closed-shell electronic configuration for all the group 15 metals and iron atoms.
Collapse
Affiliation(s)
- Luyan Meng
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| | | | | | | | | | | |
Collapse
|
17
|
Frenking G, Fernández I, Holzmann N, Pan S, Krossing I, Zhou M. Metal-CO Bonding in Mononuclear Transition Metal Carbonyl Complexes. JACS AU 2021; 1:623-645. [PMID: 34467324 PMCID: PMC8395605 DOI: 10.1021/jacsau.1c00106] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 05/07/2023]
Abstract
DFT calculations have been carried out for coordinatively saturated neutral and charged carbonyl complexes [M(CO) n ] q where M is a metal atom of groups 2-10. The model compounds M(CO)2 (M = Ca, Sr, Ba) and the experimentally observed [Ba(CO)]+ were also studied. The bonding situation has been analyzed with a variety of charge and energy partitioning approaches. It is shown that the Dewar-Chatt-Duncanson model in terms of M ← CO σ-donation and M → CO π-backdonation is a valid approach to explain the M-CO bonds and the trend of the CO stretching frequencies. The carbonyl ligands of the neutral complexes carry a negative charge, and the polarity of the M-CO bonds increases for the less electronegative metals, which is particularly strong for the group 4 and group 2 atoms. The NBO method delivers an unrealistic charge distribution in the carbonyl complexes, while the AIM approach gives physically reasonable partial charges that are consistent with the EDA-NOCV calculations and with the trend of the C-O stretching frequencies. The AdNDP method provides delocalized MOs which are very useful models for the carbonyl complexes. Deep insight into the nature of the metal-CO bonds and quantitative information about the strength of the [M] ← (CO)8 σ-donation and [M(d)] → (CO)8 π-backdonation visualized by the deformation densities are provided by the EDA-NOCV method. The large polarity of the M-CO π orbitals toward the CO end in the alkaline earth octacarbonyls M(CO)8 (M = Ca, Sr, Ba) leads to small values for the delocalization indices δ(M-C) and δ(M···O) and significant overlap between adjacent CO groups, but the origin of the charge migration and the associated red-shift of the C-O stretching frequencies is the [M(d)] → (CO)8 π-backdonation. The heavier alkaline earth metals calcium, strontium and barium use their s/d valence orbitals for covalent bonding. They are therefore to be assigned to the transition metals.
Collapse
Affiliation(s)
- Gernot Frenking
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Israel Fernández
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
Químicas, Universidad Complutense
de Madrid, 28040 Madrid, Spain
| | - Nicole Holzmann
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sudip Pan
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Ingo Krossing
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Mingfei Zhou
- Department
of Chemistry, Collaborative Innovation Center of Chemistry for Energy
Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Wang G, Zhao J, Hu H, Li J, Zhou M. Formation and Characterization of BeFe(CO)
4
−
Anion with Beryllium−Iron Bonding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Jing Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Han‐Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
- Department of Chemistry School of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| |
Collapse
|
19
|
Wang G, Zhao J, Hu HS, Li J, Zhou M. Formation and Characterization of BeFe(CO) 4 - Anion with Beryllium-Iron Bonding. Angew Chem Int Ed Engl 2021; 60:9334-9338. [PMID: 33400362 DOI: 10.1002/anie.202015760] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 11/07/2022]
Abstract
Heteronuclear BeFe(CO)4 - anion complex is generated in the gas phase, which is detected by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The complex is characterized to have a Be-Fe bonded Be-Fe(CO)4 - structure with C3v symmetry and all of the four carbonyl ligands bonded on the iron center. Quantum chemical studies indicate that the complex has a quite short Be-Fe bond. Besides one electron-sharing σ bond, there are two additional, albeit weak, Be ← Fe(CO)4 - dative π bonding interactions. The findings imply that metal-metal bonding between s-block and transition metals is viable under suitable coordination environment.
Collapse
Affiliation(s)
- Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jing Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China.,Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
20
|
Wang C, Li Q, Kong X, Zheng H, Wang T, Zhao Y, Li G, Xie H, Yang J, Wu G, Zhang W, Dai D, Zhou M, Yang X, Jiang L. Observation of Carbon-Carbon Coupling Reaction in Neutral Transition-Metal Carbonyls. J Phys Chem Lett 2021; 12:1012-1017. [PMID: 33470826 DOI: 10.1021/acs.jpclett.0c03766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neutral titanium-metal carbonyl complexes with the chemical formula Ti(CO)n (n = 4-7) are produced in the gas phase by the reactions of titanium atoms with carbon monoxide in a pulsed laser vaporization-supersonic expansion source. Their infrared absorption spectra in the carbonyl stretching frequency region are measured by infrared plus vacuum ultraviolet (IR+VUV) two-color ionization spectroscopy based on a tunable VUV free electron laser. Infrared spectroscopy in conjunction with quantum chemical calculations confirm that all of these complexes have unexpected titanium ketenylidene OTiCCO(CO)n-2 structures. Bonding analysis indicates that the OTiCCO core structure can be described by the bonding interactions between a TiO+ cation in the doublet ground state and a doublet ground state of CCO-. The results reveal that the C-O bond breaking and C-C bond formation proceed efficiently in the reactions between laser-vaporized titanium atoms and carbon monoxide.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qinming Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
21
|
Wang G, Zhou Y, Jin X, Jin J, Zhou M. A Homoleptic Beryllium Carbonyl Complex with an End‐On and Side‐On Bridging Carbonyl Ligand. Angew Chem Int Ed Engl 2020; 60:1651-1655. [DOI: 10.1002/anie.202012867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Guanjun Wang
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Yangyu Zhou
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Xiaoyang Jin
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Jiaye Jin
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Mingfei Zhou
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| |
Collapse
|
22
|
Wang G, Zhou Y, Jin X, Jin J, Zhou M. A Homoleptic Beryllium Carbonyl Complex with an End‐On and Side‐On Bridging Carbonyl Ligand. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guanjun Wang
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Yangyu Zhou
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Xiaoyang Jin
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Jiaye Jin
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Mingfei Zhou
- Department of Chemistry Collaborative Innovation Center of Chemistry for Energy Materials Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| |
Collapse
|
23
|
Yuan Q, Cao W, Wang XB. Cryogenic and temperature-dependent photoelectron spectroscopy of metal complexes. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1719699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
24
|
Xie M, Zhang ZL, Zhang Y, Sun XN, Sun FF, Hu YJ. Infrared spectroscopy of neutral and cationic pyrrolidine monomer in supersonic jet. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1910183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhao-li Zhang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yu Zhang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiao-nan Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fu-fei Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yong-jun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
25
|
Meng L, Liu S, Qin Q, Zeng B, Chi C. Infrared Photodissociation Spectroscopy of Heteronuclear Arsenic–Iron Carbonyl Cluster Anions. J Phys Chem A 2020; 124:1158-1166. [DOI: 10.1021/acs.jpca.9b11888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luyan Meng
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| | - Siying Liu
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| | - Qifeng Qin
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| | - Bin Zeng
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| | - Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| |
Collapse
|
26
|
Wang SF, Fan MH, He YT, Li QX. Catalytic conversion of biomass-derived polyols into para-xylene over SiO2-modified zeolites. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1901016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Sheng-fei Wang
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Ming-hui Fan
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yu-ting He
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Quan-xin Li
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Ariyarathna IR, Miliordos E. Electronic and geometric structure analysis of neutral and anionic alkali metal complexes of the CX series (X = O, S, Se, Te, Po): The case of M(CX) n = 1-4 (M = Li, Na) and their dimers. J Comput Chem 2019; 40:1344-1351. [PMID: 30747451 DOI: 10.1002/jcc.25791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Accepted: 01/06/2019] [Indexed: 11/10/2022]
Abstract
Bonding mechanisms, potential energy curves, accurate structures, energetics, and electron affinities are obtained for all M(CX)1-3 species with M = Li, Na, and X = O, S, Se, Te, and Po, at the coupled-cluster level with triple-ζ quality basis sets. We discuss and rationalize the trends within different molecular groups. For example, we found larger binding energies for M = Li, for CX = CPo, and for the tri-coordinated (n = 3) complexes. All three facts are explained by the fact that the global minimum of the titled complexes originate from the first excited 2 P (2p1 for Li or 3p1 for Na) state of the metal, with each ligand forming a dative bond with the metal. All of the complexes, except Na(CO)3 , have stable anions, and their electron affinity increases as MCX < M(CX)3 < M(CX)2 . This sequence is attributed to the binding modes of these complexes. The Li(CO)3 and Li(CS)3 complexes are able to accommodate a fourth ligand, which is attached to the system electrostatically. Finally, two Li(CO)3 molecules can bind together covalently to make the ethane analog. The staggered conformer was found lower in energy and unlike ethane the CO ligands bend toward the neighboring Li(CO)3 moiety. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849-5312
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849-5312
| |
Collapse
|
28
|
Jin J, Pan S, Jin X, Lei S, Zhao L, Frenking G, Zhou M. Octacarbonyl Anion Complexes of the Late Lanthanides Ln(CO) 8 - (Ln=Tm, Yb, Lu) and the 32-Electron Rule. Chemistry 2019; 25:3229-3234. [PMID: 30566753 DOI: 10.1002/chem.201805260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/11/2022]
Abstract
The lanthanide octacarbonyl anion complexes Ln(CO)8 - (Ln=Tm, Yb, Lu) were produced in the gas phase and detected by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching-frequency region. By comparison of the experimental CO-stretching frequencies with calculated data, which are strongly red-shifted with respect to free CO, the Yb(CO)8 - and Lu(CO)8 - complexes were determined to possess octahedral (Oh ) symmetry and a doublet X2 A2u (Yb) and singlet X1 A1g (Lu) electronic ground state, whereas Tm(CO)8 - exhibits a D4h equilibrium geometry and a triplet X3 B1g ground state. The analysis of the electronic structures revealed that the metal-CO attractive forces come mainly from covalent orbital interactions, which are dominated by [Ln(d)]→(CO)8 π backdonation and [Ln(d)]←(CO)8 σ donation (contributes ≈77 and 16 % to covalent bonding, respectively). The metal f orbitals play a very minor role in the bonding. The electronic structure of all three lanthanide complexes obeys the 32-electron rule if only those electrons that occupy the valence orbitals of the metal are considered.
Collapse
Affiliation(s)
- Jiaye Jin
- Department of Chemistry, Collaborative Innovation Center of, Chemistry for Energy Materials, Shanghai Key Laboratory of, Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiaoyang Jin
- Department of Chemistry, Collaborative Innovation Center of, Chemistry for Energy Materials, Shanghai Key Laboratory of, Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Shujun Lei
- Department of Chemistry, Collaborative Innovation Center of, Chemistry for Energy Materials, Shanghai Key Laboratory of, Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of, Chemistry for Energy Materials, Shanghai Key Laboratory of, Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
Wang JQ, Chi C, Lu JB, Meng L, Luo M, Hu HS, Zhou M, Li J. Triple bonds between iron and heavier group-14 elements in the AFe(CO) 3- complexes (A = Ge, Sn, and Pb). Chem Commun (Camb) 2019; 55:5685-5688. [PMID: 31020278 DOI: 10.1039/c8cc09340g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heteronuclear transition-metal-main-group element carbonyl anion complexes of AFe(CO)3- (A = Ge, Sn, and Pb) are prepared using a laser vaporization supersonic ion source in the gas phase, which were studied by mass-selected infrared (IR) photodissociation spectroscopy. The geometric and electronic structures of the experimentally observed species are identified by a comparison of the measured and calculated IR spectra. These anion complexes have a 2A1 doublet electronic ground state and feature an A[triple bond, length as m-dash]Fe triply bonded C3v structure with all of the carbonyl ligands bonded at the iron center. Bonding analyses of AFe(CO)3- (A = C, Si, Ge, Sn, Pb, and Fl) indicate that the complexes are triply bonded between the valence np atomic orbitals of bare group-14 atoms and the hybridized 3d and 4p atomic orbitals of iron.
Collapse
Affiliation(s)
- Jia-Qi Wang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu X, Zhao L, Jin J, Pan S, Li W, Jin X, Wang G, Zhou M, Frenking G. Observation of alkaline earth complexes M(CO) 8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 2018; 361:912-916. [PMID: 30166489 DOI: 10.1126/science.aau0839] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/13/2018] [Indexed: 11/02/2022]
Abstract
The alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) typically engage in chemical bonding as classical main-group elements through their ns and np valence orbitals, where n is the principal quantum number. Here we report the isolation and spectroscopic characterization of eight-coordinate carbonyl complexes M(CO)8 (where M = Ca, Sr, or Ba) in a low-temperature neon matrix. Analysis of the electronic structure of these cubic Oh -symmetric complexes reveals that the metal-carbon monoxide (CO) bonds arise mainly from [M(dπ)] → (CO)8 π backdonation, which explains the strong observed red shift of the C-O stretching frequencies. The corresponding radical cation complexes were also prepared in gas phase and characterized by mass-selected infrared photodissociation spectroscopy, confirming adherence to the 18-electron rule more conventionally associated with transition metal chemistry.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jiaye Jin
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xiaoyang Jin
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China. .,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| |
Collapse
|
31
|
Li G, Zhang J, Xie H, Kong X, Jiang L. Ligand-Enhanced CO Activation by the Early Lanthanide-Nickel Heterodimers: Photoelectron Velocity-Map Imaging Spectroscopy of LnNi(CO) n- (Ln = La, Ce). J Phys Chem A 2018; 122:3811-3818. [PMID: 29607640 DOI: 10.1021/acs.jpca.8b02254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterobimetallic lanthanum-nickel and cerium-nickel carbonyls, LnNi(CO) n- (Ln = La, Ce; n = 2-5), were generated using a pulsed laser vaporization/supersonic expansion ion source. These compounds were characterized by photoelectron velocity-map imaging spectroscopy and quantum chemical calculations. The binding motif in the most stable isomers of the n = 2 and 3 clusters consists of one side-on-bonded carbonyl. A new building block of two side-on-bonded carbonyls is favored at n = 4, which is retained at n = 5, evidencing the increase of the number of extremely activated CO molecule in the larger clusters. The experimental and theoretical results demonstrate the ligand-enhanced CO activation by the early lanthanide-nickel heterodimers, which would have important implications for the design of alloy catalysts for activation of a molecular ligand.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Jumei Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|