1
|
Wu W, Feng B, Tian Y, He Z, Yang D, Wu G, Yang X. Insights into Ultrafast Relaxation Dynamics of Electronically Excited Furfural and 5-Methylfurfural. J Phys Chem A 2024; 128:8906-8913. [PMID: 39364917 PMCID: PMC11497838 DOI: 10.1021/acs.jpca.4c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The ultrafast relaxation dynamics of furfural and 5-methylfurfural following excitation in the ultraviolet range is investigated using the femtosecond time-resolved photoelectron spectroscopy method. Specifically, the pump wavelength-dependent decay dynamics of electronically excited furfural and 5-methylfurfural is discussed on the basis of a detailed analysis of our measured time-resolved photoelectron spectroscopy spectra. Irradiation at all pump wavelengths prepares both furfural and 5-methylfurfural molecules with different vibrational levels in the first optically bright S2 (1ππ*) state, the lifetime of which is measured to be at least hundreds of femtoseconds. Besides the prominent deactivation channels of ring-opening and ring-puckering pathways for the S2(1ππ*) state, we propose that there is a minor decay channel of internal conversion from the initially prepared S2(1ππ*) state to the S1(1nπ*) state. The wavepacket decays out of the Franck-Condon region on the S2(1ππ*) state potential energy surface and bifurcates into different parts somewhere. A small fraction of the wavepacket funnels down to the S1(1nπ*) state via internal conversion. The subsequently populated S1(1nπ*) state contains large vibrational excess energy and decays over a lifetime of 2.5-2.8 ps. One of the deactivation channels of the S1(1nπ*) state is intersystem crossing to the 3ππ* triplet state. In addition, methyl substitution effects on the excited-state dynamics of furfural are also discussed. This experimental study provides new insights into the excitation energy-dependent decay dynamics of photoexcited furfural and 5-methylfurfural.
Collapse
Affiliation(s)
- Wenping Wu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Baihui Feng
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhuan Tian
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang He
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Dongyuan Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department
of Chemistry, College of Science, Southern
University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Abma G, Parkes MA, Horke DA. Preparation of Tautomer-Pure Molecular Beams by Electrostatic Deflection. J Phys Chem Lett 2024; 15:4587-4592. [PMID: 38656191 PMCID: PMC11071072 DOI: 10.1021/acs.jpclett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Tautomers are ubiquitous throughout chemistry and typically considered inseparable in solution. Yet (bio)chemical activity is highly tautomer-specific, with common examples being the amino and nucleic acids. While tautomers exist in an equilibrium in solution, in the cold environment of a molecular beam the barrier to tautomerization is typically much too high for interconversion, and tautomers can be considered separate species. Here we demonstrate the first separation of tautomers within a molecular beam and the production of tautomerically pure gas-phase samples. We show this for the 2-pyridone/2-hydroxypyridine system, an important structural motif in both uracil and cytosine. Spatial separation of the tautomers is achieved via electrostatic deflection in strong inhomogeneous fields. We furthermore collect tautomer-resolved photoelectron spectra using femtosecond multiphoton ionization. This paves the way for studying the structure-function-dynamic relationship on the level of individual tautomers, using approaches that typically lack the resolution to do so, such as ultrafast dynamics experiments.
Collapse
Affiliation(s)
- Grite
L. Abma
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Michael A. Parkes
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Daniel A. Horke
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Feng B, Wu W, He Z, Yang D, Wu G, Yang X. Ultrafast Decay Dynamics of the 2 1ππ* Electronic State of N-Methyl-2-pyridone. J Phys Chem A 2024. [PMID: 38690846 DOI: 10.1021/acs.jpca.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The ultrafast decay dynamics of N-methyl-2-pyridone upon excitation in the near-ultraviolet range of 261.5-227.9 nm is investigated using the femtosecond time-resolved photoelectron spectroscopy method. Irradiation at 261.5 nm prepares N-methyl-2-pyridone molecules with high vibrational levels in the 11ππ* state. The radiation-less decay to the ground state via internal conversion is suggested to be the dominant channel for the 11ππ* state with large vibrational excess energy, which is revealed by a lifetime of 1.6 ± 0.2 ps. As the pump wavelength decreases, we found that irradiation at 238.5 and 227.9 nm results in the population of the 21ππ* state. This is in agreement with the assignment of the vapor-phase UV absorption bands of N-methyl-2-pyridone. On the basis of the detailed analysis of our measured time-resolved photoelectron spectra at all pump wavelengths, we conclude that the 21ππ* state has an ultrashort lifetime of 50 ± 10 fs. In addition, the S1(11ππ*) state is subsequently populated via internal conversion and decays over a lifetime of 680-620 fs. The most probable whole deactivation pathway of the 21ππ* state is discussed. This experimental study provides new insights into the excitation energy-dependent decay dynamics of electronically excited N-methyl-2-pyridone.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Feng B, Wu W, Yang S, He Z, Fang B, Yang D, Wu G, Yang X. Insights into ultrafast decay dynamics of electronically excited pyridine- N-oxide. Phys Chem Chem Phys 2024; 26:8308-8317. [PMID: 38389467 DOI: 10.1039/d3cp06187f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The ultrafast decay dynamics of pyridine-N-oxide upon excitation in the near-ultraviolet range of 340.2-217.6 nm is investigated using the femtosecond time-resolved photoelectron imaging technique. The time-resolved photoelectron spectra and photoelectron angular distributions at all pump wavelengths are carefully analyzed and the following view is derived: at the longest pump wavelengths (340.2 and 325.6 nm), pyridine-N-oxide is excited to the S1(1ππ*) state with different vibrational levels. The depopulation rate of the S1 state shows a marked dependence on vibrational energy and mode, and the lifetime is in the range of 1.4-160 ps. At 289.8 and 280.5 nm, both the second 1ππ* state and the S1 state are initially prepared. The former has an extremely short lifetime of ∼60 fs, which indicates that the ultrafast deactivation pathway such as a rapid internal conversion to one close-lying state is its dominant decay channel, while the latter is at high levels of vibrational excitation and decays within the range of 380-520 fs. At the shortest pump wavelengths (227.3 and 217.6 nm), another excited state of Rydberg character is mostly excited. We assign this state to the 3s Rydberg state which has a lifetime of 0.55-2.2 ps. This study provides a comprehensive picture of the ultrafast excited-state decay dynamics of the photoexcited pyridine-N-oxide molecule.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaikang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Benjie Fang
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Feng B, Yang D, He Z, Fang B, Wu G, Yang X. Excitation Energy-Dependent Decay Dynamics of the S 1 State of N-Methyl-2-pyridone. J Phys Chem A 2023; 127:10139-10146. [PMID: 38058157 DOI: 10.1021/acs.jpca.3c05745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The UV-induced decay dynamics of N-methyl-2-pyridone is investigated using a femtosecond time-resolved photoelectron spectroscopy method. Irradiation in the wavelength range of 339.3-258.9 nm prepares N-methyl-2-pyridone molecules with very different vibrational levels of the S1(11ππ*) state. For v' = 0 (origin) and a few low-energy vibrational levels slightly above the S1 state origin, the radiative decay channel is in operation for some specific vibrations. This is revealed by the excited-state lifetime of ≫1 ns. In addition, some other nearby S1 vibronic states have a much shorter lifetime in the range of several picoseconds to a few tens of picoseconds, indicating that the radiation-less decay to the ground state (S0) via internal conversion is the dominant channel for them. As the pump wavelength slightly decreases, the radiative decay is suddenly not important at all, and the deactivation rate of the S1 state becomes faster. At shorter pump wavelengths, the lifetime of highly excited vibrational states of the S1 state further decreases with the increase in the vibrational excess energy. This study provides quantitative information about the excitation energy-dependent decay dynamics of the S1 state of N-methyl-2-pyridone. Methyl substitution effects on the excited-state dynamics of 2-pyridone are also discussed.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Benjie Fang
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Yang D, Min Y, Feng B, Yang X, Wu G. Vibrational-state dependent decay dynamics of 2-pyridone excited to the S 1 electronic state. Phys Chem Chem Phys 2022; 24:22710-22715. [PMID: 36106839 DOI: 10.1039/d2cp03279a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The S1(1ππ*) state decay dynamics of 2-pyridone excited around the 000 band origin is investigated using femtosecond time-resolved photoelectron imaging technique. At a pump wavelength of 334.0 nm, the vibrational ground state and a few low energy vibrational states covered by the bandwidth of the pump laser pulses are excited. The lifetimes of the vibrational states show strong dependence on the vibrational energy and mode. A quantum beat between two lowest energy vibrational states is also observed. This study provides quantitative information about the vibrational-state dependent lifetime of the S1 state of 2-pyridone.
Collapse
Affiliation(s)
- Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Yanjun Min
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China. .,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| |
Collapse
|