1
|
Olshin PK, Park WW, Kim YJ, Choi YJ, Mamonova DV, Kolesnikov IE, Afanaseva EV, Kwon OH. Boltzmann-Distribution-Driven Cathodoluminescence Thermometry in In Situ Transmission Electron Microscopy. ACS NANO 2024; 18:33441-33451. [PMID: 39604087 DOI: 10.1021/acsnano.4c10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nanothermometry in in situ transmission electron microscopy (TEM) is useful for comprehending the functioning mechanisms of the heterogeneous matter through real-time observations. Herein, we introduce a Boltzmann-distribution-driven cathodoluminescence (CL) nanothermometry for in situ local temperature probing in TEM. The population distribution across the close-lying Stark sublevels of dysprosium ions in an yttrium vanadate matrix follows the Boltzmann distribution, enabling the use of the CL-intensity ratio as a thermometry over a wide temperature range of 103-435 K with a relative sensitivity exceeding 3% K-1 and precision of ±2%. Superior to other CL-based thermometries, the present approach is independent of electron-beam parameters and dopant concentration, extending the robustness and applicability of CL-based nanothermometry in electron microscopy. We further demonstrate the real-time mapping of the temperature distribution across a TEM grid under laser irradiation.
Collapse
Affiliation(s)
- Pavel K Olshin
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Choi
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daria V Mamonova
- Department of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Afanaseva
- Department of Chemistry, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Straub MS, Harder OF, Mowry NJ, Barrass SV, Hruby J, Drabbels M, Lorenz UJ. Laser Flash Melting Cryo-EM Samples to Overcome Preferred Orientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624652. [PMID: 39605560 PMCID: PMC11601657 DOI: 10.1101/2024.11.21.624652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sample preparation remains a bottleneck for protein structure determination by cryo-electron microscopy. A frequently encountered issue is that proteins adsorb to the air-water interface of the sample in a limited number of orientations. This makes it challenging to obtain high-resolution reconstructions or may even cause projects to fail altogether. We have previously observed that laser flash melting and revitrification of cryo samples reduces preferred orientation for large, symmetric particles. Here, we demonstrate that our method can in fact be used to scramble the orientation of proteins of a range of sizes and symmetries. The effect can be enhanced for some proteins by increasing the heating rate during flash melting or by depositing amorphous ice onto the sample prior to revitrification. This also allows us to shed light onto the underlying mechanism. Our experiments establish a set of tools for overcoming preferred orientation that can be easily integrated into existing workflows.
Collapse
Affiliation(s)
| | | | | | - Sarah V. Barrass
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| | - Jakub Hruby
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Lorenz UJ. Microsecond time-resolved cryo-electron microscopy. Curr Opin Struct Biol 2024; 87:102840. [PMID: 38810313 DOI: 10.1016/j.sbi.2024.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Microsecond time-resolved cryo-electron microscopy has emerged as a novel approach for directly observing protein dynamics. By providing microsecond temporal and near-atomic spatial resolution, it has the potential to elucidate a wide range of dynamics that were previously inaccessible and therefore, to significantly advance our understanding of protein function. This review summarizes the properties of the laser melting and revitrification process that underlies the technique and describes different experimental implementations. Strategies for initiating and probing dynamics are discussed. Finally, the microsecond time-resolved observation of the capsid dynamics of cowpea chlorotic mottle virus, an icosahedral plant virus, is reviewed, which illustrates important features of the technique as well as its potential.
Collapse
Affiliation(s)
- Ulrich J Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Rolle K, Okotrub KA, Evmenova EA, Kuznetsov AG, Babin SA, Surovtsev NV. Reversal of crystallization in cryoprotected samples by laser editing. J Chem Phys 2024; 160:184506. [PMID: 38743430 DOI: 10.1063/5.0206117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Advances in cryobiology techniques commonly target either the cooling or the warming cycle, while little thought has been given to ≪repair≫ protocols applicable during cold storage. In particular, crystallization is the dominant threat to cryopreserved samples but proceeds from small nuclei that are innocuous if further growth is forestalled. To this end, we propose a laser editing technique that locally heats individual crystals above their melting point by a focused nanosecond pulse, followed by amorphization during rapid resolidification. As a reference, we first apply the approach to ice crystals in cryoprotected solution and use Raman confocal mapping to study the deactivation of crystalline order. Then, we examine dimethyl sulfoxide trihydrate crystals that can germinate at low temperatures in maximally freeze concentrated regions, as commonly produced by equilibrium cooling protocols. We show how to uniquely identify this phase from Raman spectra and evidence retarded growth of laser-edited crystals during warming.
Collapse
Affiliation(s)
- K Rolle
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - K A Okotrub
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - E A Evmenova
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - A G Kuznetsov
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - S A Babin
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Krüger C, Mowry NJ, Drabbels M, Lorenz UJ. Shaped Laser Pulses for Microsecond Time-Resolved Cryo-EM: Outrunning Crystallization during Flash Melting. J Phys Chem Lett 2024; 15:4244-4248. [PMID: 38602841 PMCID: PMC11057027 DOI: 10.1021/acs.jpclett.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Water vitrifies if cooled at rates above 3 × 105 K/s. In contrast, when the resulting amorphous ice is flash heated, crystallization occurs even at a more than 10 times higher heating rate, as we have recently shown. This may present an issue for microsecond time-resolved cryo-electron microscopy experiments, in which vitreous ice samples are briefly melted with a laser pulse because transient crystallization could potentially alter the dynamics of the embedded proteins. Here, we demonstrate how shaped microsecond laser pulses can be used to increase the heating rate and outrun crystallization. Time-resolved electron diffraction experiments reveal that the critical heating rate for amorphous solid water (ASW) is about 108 K/s. Our experiments add to the toolbox of the emerging field of microsecond time-resolved cryo-electron microscopy by demonstrating a straightforward approach for avoiding crystallization during laser melting and for achieving significantly higher heating rates, which paves the way for nanosecond time-resolved experiments.
Collapse
Affiliation(s)
- Constantin
R. Krüger
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Nathan J. Mowry
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Klebl DP, Aspinall L, Muench SP. Time resolved applications for Cryo-EM; approaches, challenges and future directions. Curr Opin Struct Biol 2023; 83:102696. [PMID: 37716094 DOI: 10.1016/j.sbi.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023]
Abstract
Developments within the cryo-EM field have allowed us to generate higher-resolution "static" structures and pull out different conformational states which exist at equilibrium within the sample. Moreover, to trap non-equilibrium states and determine conformations that are present after a defined period of time (typically in the ms time frame) new approaches have been developed for the application of time-resolved cryo-EM. Here we give an overview of these different approaches and the limitations and strengths of each whilst identifying some of the current challenges to achieve higher resolutions and trap states within faster time frames. Time-resolved applications may play an important role in the ever-expanding toolkit of cryo-EM and open up new possibilities in both single particle and tomographic studies.
Collapse
Affiliation(s)
- David P Klebl
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Louie Aspinall
- School of Molecular and Cellular Biology, University of Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, UK.
| |
Collapse
|
7
|
Harder OF, Barrass SV, Drabbels M, Lorenz UJ. Fast viral dynamics revealed by microsecond time-resolved cryo-EM. Nat Commun 2023; 14:5649. [PMID: 37704664 PMCID: PMC10499870 DOI: 10.1038/s41467-023-41444-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Observing proteins as they perform their tasks has largely remained elusive, which has left our understanding of protein function fundamentally incomplete. To enable such observations, we have recently proposed a technique that improves the time resolution of cryo-electron microscopy (cryo-EM) to microseconds. Here, we demonstrate that microsecond time-resolved cryo-EM enables observations of fast protein dynamics. We use our approach to elucidate the mechanics of the capsid of cowpea chlorotic mottle virus (CCMV), whose large-amplitude motions play a crucial role in the viral life cycle. We observe that a pH jump causes the extended configuration of the capsid to contract on the microsecond timescale. While this is a concerted process, the motions of the capsid proteins involve different timescales, leading to a curved reaction path. It is difficult to conceive how such a detailed picture of the dynamics could have been obtained with any other method, which highlights the potential of our technique. Crucially, our experiments pave the way for microsecond time-resolved cryo-EM to be applied to a broad range of protein dynamics that previously could not have been observed. This promises to fundamentally advance our understanding of protein function.
Collapse
Affiliation(s)
- Oliver F Harder
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Sarah V Barrass
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Marcel Drabbels
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Ulrich J Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Bongiovanni G, Harder OF, Barrass SV, Drabbels M, Lorenz UJ. Advances in Microsecond Time-Resolved Cryo-Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1007. [PMID: 37613750 DOI: 10.1093/micmic/ozad067.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Gabriele Bongiovanni
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, Lausanne, Switzerland
| | - Oliver F Harder
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, Lausanne, Switzerland
| | - Sarah V Barrass
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, Lausanne, Switzerland
| | - Marcel Drabbels
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, Lausanne, Switzerland
| | - Ulrich J Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, Lausanne, Switzerland
| |
Collapse
|
9
|
Krüger CR, Mowry NJ, Bongiovanni G, Drabbels M, Lorenz UJ. Electron diffraction of deeply supercooled water in no man's land. Nat Commun 2023; 14:2812. [PMID: 37198157 DOI: 10.1038/s41467-023-38520-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
A generally accepted understanding of the anomalous properties of water will only emerge if it becomes possible to systematically characterize water in the deeply supercooled regime, from where the anomalies appear to emanate. This has largely remained elusive because water crystallizes rapidly between 160 K and 232 K. Here, we present an experimental approach to rapidly prepare deeply supercooled water at a well-defined temperature and probe it with electron diffraction before crystallization occurs. We show that as water is cooled from room temperature to cryogenic temperature, its structure evolves smoothly, approaching that of amorphous ice just below 200 K. Our experiments narrow down the range of possible explanations for the origin of the water anomalies and open up new avenues for studying supercooled water.
Collapse
Affiliation(s)
- Constantin R Krüger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Nathan J Mowry
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Gabriele Bongiovanni
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Marcel Drabbels
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Ulrich J Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Bhattacharjee B, Rahman MM, Hibbs RE, Stowell MHB. A simple flash and freeze system for cryogenic time-resolved electron microscopy. Front Mol Biosci 2023; 10:1129225. [PMID: 36959978 PMCID: PMC10028177 DOI: 10.3389/fmolb.2023.1129225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
As the resolution revolution in CryoEM expands to encompass all manner of macromolecular complexes, an important new frontier is the implementation of cryogenic time resolved EM (cryoTREM). Biological macromolecular complexes are dynamic systems that undergo conformational changes on timescales from microseconds to minutes. Understanding the dynamic nature of biological changes is critical to understanding function. To realize the full potential of CryoEM, time resolved methods will be integral in coupling static structures to dynamic functions. Here, we present an LED-based photo-flash system as a core part of the sample preparation phase in CryoTREM. The plug-and-play system has a wide range of operational parameters, is low cost and ensures uniform irradiation and minimal heating of the sample prior to plunge freezing. The complete design including electronics and optics, manufacturing, control strategies and operating procedures are discussed for the Thermo Scientific™ Vitrobot and Leica™ EM GP2 plunge freezers. Possible adverse heating effects on the biological sample are also addressed through theoretical as well as experimental studies.
Collapse
Affiliation(s)
- Biddut Bhattacharjee
- University of Colorado Boulder, Boulder, United States
- *Correspondence: Biddut Bhattacharjee, ; Michael H. B. Stowell,
| | | | - Ryan E. Hibbs
- University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael H. B. Stowell
- University of Colorado Boulder, Boulder, United States
- *Correspondence: Biddut Bhattacharjee, ; Michael H. B. Stowell,
| |
Collapse
|
11
|
Bongiovanni G, Harder OF, Drabbels M, Lorenz UJ. Microsecond melting and revitrification of cryo samples with a correlative light-electron microscopy approach. Front Mol Biosci 2022; 9:1044509. [PMID: 36438663 PMCID: PMC9685559 DOI: 10.3389/fmolb.2022.1044509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/28/2022] [Indexed: 08/25/2023] Open
Abstract
We have recently introduced a novel approach to time-resolved cryo-electron microscopy (cryo-EM) that affords microsecond time resolution. It involves melting a cryo sample with a laser beam to allow dynamics of the embedded particles to occur. Once the laser beam is switched off, the sample revitrifies within just a few microseconds, trapping the particles in their transient configurations, which can subsequently be imaged to obtain a snap shot of the dynamics at this point in time. While we have previously performed such experiments with a modified transmission electron microscope, we here demonstrate a simpler implementation that uses an optical microscope. We believe that this will make our technique more easily accessible and hope that it will encourage other groups to apply microsecond time-resolved cryo-EM to study the fast dynamics of a variety of proteins.
Collapse
Affiliation(s)
| | | | | | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Harder OF, Voss JM, Olshin PK, Drabbels M, Lorenz UJ. Microsecond melting and revitrification of cryo samples: protein structure and beam-induced motion. Acta Crystallogr D Struct Biol 2022; 78:883-889. [PMID: 35775987 PMCID: PMC9248841 DOI: 10.1107/s205979832200554x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
A novel approach to time-resolved cryo-electron microscopy (cryo-EM) has recently been introduced that involves melting a cryo sample with a laser beam to allow protein dynamics to briefly occur in the liquid, before trapping the particles in their transient configurations by rapidly revitrifying the sample. With a time resolution of just a few microseconds, this approach is notably fast enough to study the domain motions that are typically associated with the activity of proteins but which have previously remained inaccessible. Here, crucial details are added to the characterization of the method. It is shown that single-particle reconstructions of apoferritin and Cowpea chlorotic mottle virus from revitrified samples are indistinguishable from those from conventional samples, demonstrating that melting and revitrification leaves the particles intact and that they do not undergo structural changes within the spatial resolution afforded by the instrument. How rapid revitrification affects the properties of the ice is also characterized, showing that revitrified samples exhibit comparable amounts of beam-induced motion. The results pave the way for microsecond time-resolved studies of the conformational dynamics of proteins and open up new avenues to study the vitrification process and to address beam-induced specimen movement.
Collapse
Affiliation(s)
- Oliver F. Harder
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonathan M. Voss
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pavel K. Olshin
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Voss JM, Harder OF, Olshin PK, Drabbels M, Lorenz UJ. Microsecond melting and revitrification of cryo samples. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:054302. [PMID: 34734102 PMCID: PMC8550802 DOI: 10.1063/4.0000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 05/29/2023]
Abstract
The dynamics of proteins that are associated with their function typically occur on the microsecond timescale, orders of magnitude faster than the time resolution of cryo-electron microscopy. We have recently introduced a novel approach to time-resolved cryo-electron microscopy that affords microsecond time resolution. It involves melting a cryo sample with a heating laser, so as to allow dynamics of the proteins to briefly occur in the liquid phase. When the laser is turned off, the sample rapidly revitrifies, trapping the particles in their transient configurations. Precise control of the temperature evolution of the sample is crucial for such an approach to succeed. Here, we provide a detailed characterization of the heat transfer occurring under laser irradiation as well as the associated phase behavior of the cryo sample. While areas close to the laser focus undergo melting and revitrification, surrounding regions crystallize. In situ observations of these phase changes therefore provide a convenient approach for assessing the temperature reached in each melting and revitrification experiment and for adjusting the heating laser power on the fly.
Collapse
Affiliation(s)
- Jonathan M. Voss
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oliver F. Harder
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Pavel K. Olshin
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|