• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4642360)   Today's Articles (455)   Subscriber (50477)
For: Dral PO, Owens A, Dral A, Csányi G. Hierarchical machine learning of potential energy surfaces. J Chem Phys 2020;152:204110. [DOI: 10.1063/5.0006498] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
Number Cited by Other Article(s)
1
Nandi A, Pandey P, Houston PL, Qu C, Yu Q, Conte R, Tkatchenko A, Bowman JM. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. J Chem Theory Comput 2024;20:8807-8819. [PMID: 39361051 PMCID: PMC11500277 DOI: 10.1021/acs.jctc.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
2
Sit MK, Das S, Samanta K. Machine Learning-Assisted Mixed Quantum-Classical Dynamics without Explicit Nonadiabatic Coupling: Application to the Photodissociation of Peroxynitric Acid. J Phys Chem A 2024;128:8244-8253. [PMID: 39283987 DOI: 10.1021/acs.jpca.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
3
Gutierrez-Cardenas J, Gibbas BD, Whitaker K, Kaledin M, Kaledin AL. A Low-Order Permutationally Invariant Polynomial Approach to Learning Potential Energy Surfaces Using the Bond-Order Charge-Density Matrix: Application to Cn Clusters for n = 3-10, 20. J Phys Chem A 2024;128:7703-7713. [PMID: 39205486 PMCID: PMC11407436 DOI: 10.1021/acs.jpca.4c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
4
Fisher KE, Herbst MF, Marzouk YM. Multitask methods for predicting molecular properties from heterogeneous data. J Chem Phys 2024;161:014114. [PMID: 38958501 DOI: 10.1063/5.0201681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]  Open
5
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
6
Ge F, Wang R, Qu C, Zheng P, Nandi A, Conte R, Houston PL, Bowman JM, Dral PO. Tell Machine Learning Potentials What They Are Needed For: Simulation-Oriented Training Exemplified for Glycine. J Phys Chem Lett 2024;15:4451-4460. [PMID: 38626460 DOI: 10.1021/acs.jpclett.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
7
Schröder B, Rauhut G. From the Automated Calculation of Potential Energy Surfaces to Accurate Infrared Spectra. J Phys Chem Lett 2024;15:3159-3169. [PMID: 38478898 PMCID: PMC10961845 DOI: 10.1021/acs.jpclett.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
8
Dral PO. AI in computational chemistry through the lens of a decade-long journey. Chem Commun (Camb) 2024;60:3240-3258. [PMID: 38444290 DOI: 10.1039/d4cc00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
9
Izvekov S, Kroonblawd MP, Larentzos JP, Brennan JK, Rice BM. Maximum Entropy Theory of Multiscale Coarse-Graining via Matching Thermodynamic Forces: Application to a Molecular Crystal (TATB). J Phys Chem B 2024. [PMID: 38489758 DOI: 10.1021/acs.jpcb.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
10
Célerse F, Wodrich MD, Vela S, Gallarati S, Fabregat R, Juraskova V, Corminboeuf C. From Organic Fragments to Photoswitchable Catalysts: The OFF-ON Structural Repository for Transferable Kernel-Based Potentials. J Chem Inf Model 2024;64:1201-1212. [PMID: 38319296 PMCID: PMC10900300 DOI: 10.1021/acs.jcim.3c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
11
Dral PO, Ge F, Hou YF, Zheng P, Chen Y, Barbatti M, Isayev O, Wang C, Xue BX, Pinheiro Jr M, Su Y, Dai Y, Chen Y, Zhang L, Zhang S, Ullah A, Zhang Q, Ou Y. MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows. J Chem Theory Comput 2024;20:1193-1213. [PMID: 38270978 PMCID: PMC10867807 DOI: 10.1021/acs.jctc.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
12
Vinod V, Maity S, Zaspel P, Kleinekathöfer U. Multifidelity Machine Learning for Molecular Excitation Energies. J Chem Theory Comput 2023;19:7658-7670. [PMID: 37862054 DOI: 10.1021/acs.jctc.3c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
13
Liu Y, Guo H. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. J Phys Chem A 2023;127:8765-8772. [PMID: 37815868 DOI: 10.1021/acs.jpca.3c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
14
Hu F, He F, Yaron DJ. Treating Semiempirical Hamiltonians as Flexible Machine Learning Models Yields Accurate and Interpretable Results. J Chem Theory Comput 2023;19:6185-6196. [PMID: 37705220 PMCID: PMC10536991 DOI: 10.1021/acs.jctc.3c00491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 09/15/2023]
15
Yu Q, Qu C, Houston PL, Nandi A, Pandey P, Conte R, Bowman JM. A Status Report on "Gold Standard" Machine-Learned Potentials for Water. J Phys Chem Lett 2023;14:8077-8087. [PMID: 37656898 PMCID: PMC10510435 DOI: 10.1021/acs.jpclett.3c01791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
16
Hashem Y, Foust K, Kaledin M, Kaledin AL. Fitting Potential Energy Surfaces by Learning the Charge Density Matrix with Permutationally Invariant Polynomials. J Chem Theory Comput 2023;19:5690-5700. [PMID: 37561135 PMCID: PMC10501011 DOI: 10.1021/acs.jctc.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/11/2023]
17
Izvekov S, Rice BM. Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials. J Chem Theory Comput 2023. [PMID: 37256918 DOI: 10.1021/acs.jctc.3c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
18
Murakami T, Ibuki S, Hashimoto Y, Kikuma Y, Takayanagi T. Dynamics study of the post-transition-state-bifurcation process of the (HCOOH)H+ → CO + H3O+/HCO+ + H2O dissociation: application of machine-learning techniques. Phys Chem Chem Phys 2023;25:14016-14027. [PMID: 37161528 DOI: 10.1039/d3cp00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
19
Bougueroua S, Bricage M, Aboulfath Y, Barth D, Gaigeot MP. Algorithmic Graph Theory, Reinforcement Learning and Game Theory in MD Simulations: From 3D Structures to Topological 2D-Molecular Graphs (2D-MolGraphs) and Vice Versa. Molecules 2023;28:molecules28072892. [PMID: 37049654 PMCID: PMC10096312 DOI: 10.3390/molecules28072892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]  Open
20
Zaverkin V, Holzmüller D, Bonfirraro L, Kästner J. Transfer learning for chemically accurate interatomic neural network potentials. Phys Chem Chem Phys 2023;25:5383-5396. [PMID: 36748821 DOI: 10.1039/d2cp05793j] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
21
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023;2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
22
Bougueroua S, Aboulfath Y, Barth D, Gaigeot MP. Algorithmic graph theory for post-processing molecular dynamics trajectories. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2162456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
23
Teng C, Huang D, Bao JL. A spur to molecular geometry optimization: Gradient-enhanced universal kriging with on-the-fly adaptive ab initio prior mean functions in curvilinear coordinates. J Chem Phys 2023;158:024112. [PMID: 36641392 DOI: 10.1063/5.0133675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
24
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023;19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
25
Giese TJ, Zeng J, York DM. Multireference Generalization of the Weighted Thermodynamic Perturbation Method. J Phys Chem A 2022;126:8519-8533. [PMID: 36301936 PMCID: PMC9771595 DOI: 10.1021/acs.jpca.2c06201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Kuntz D, Wilson AK. Machine learning, artificial intelligence, and chemistry: how smart algorithms are reshaping simulation and the laboratory. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
27
Young TA, Johnston-Wood T, Zhang H, Duarte F. Reaction dynamics of Diels-Alder reactions from machine learned potentials. Phys Chem Chem Phys 2022;24:20820-20827. [PMID: 36004770 DOI: 10.1039/d2cp02978b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Teng C, Wang Y, Huang D, Martin K, Tristan JB, Bao JL. Dual-Level Training of Gaussian Processes with Physically Inspired Priors for Geometry Optimizations. J Chem Theory Comput 2022;18:5739-5754. [PMID: 35939760 DOI: 10.1021/acs.jctc.2c00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Song Z, Trozzi F, Tian H, Yin C, Tao P. Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS PHYSICAL CHEMISTRY AU 2022;2:316-330. [PMID: 35936506 PMCID: PMC9344433 DOI: 10.1021/acsphyschemau.2c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
30
Habershon S. Program Synthesis of Sparse Algorithms for Wave Function and Energy Prediction in Grid-Based Quantum Simulations. J Chem Theory Comput 2022;18:2462-2478. [PMID: 35293216 PMCID: PMC9009083 DOI: 10.1021/acs.jctc.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Zhang L, Zhang S, Owens A, Yurchenko SN, Dral PO. VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces. Sci Data 2022;9:84. [PMID: 35277513 PMCID: PMC8917215 DOI: 10.1038/s41597-022-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]  Open
32
Fan J, Lan H, Ning W, Zhong R, Chen F, Yan G, Cai K. Modeling amide-I vibrations of alanine dipeptide in solution by using neural network protocol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022;268:120675. [PMID: 34890871 DOI: 10.1016/j.saa.2021.120675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
33
Toward accurate and efficient dynamic computational strategy for heterogeneous catalysis: Temperature-dependent thermodynamics and kinetics for the chemisorbed on-surface CO. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
34
Baiardi A, Grimmel SA, Steiner M, Türtscher PL, Unsleber JP, Weymuth T, Reiher M. Expansive Quantum Mechanical Exploration of Chemical Reaction Paths. Acc Chem Res 2022;55:35-43. [PMID: 34918903 DOI: 10.1021/acs.accounts.1c00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
35
Kocer E, Ko TW, Behler J. Neural Network Potentials: A Concise Overview of Methods. Annu Rev Phys Chem 2022;73:163-186. [DOI: 10.1146/annurev-physchem-082720-034254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
36
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021;260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
37
Habershon S. Solving the Schrödinger equation using program synthesis. J Chem Phys 2021;155:154102. [PMID: 34686051 DOI: 10.1063/5.0062497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
38
Saleh Y, Sanjay V, Iske A, Yachmenev A, Küpper J. Active learning of potential-energy surfaces of weakly bound complexes with regression-tree ensembles. J Chem Phys 2021;155:144109. [PMID: 34654290 DOI: 10.1063/5.0057051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian Process Regression for Materials and Molecules. Chem Rev 2021;121:10073-10141. [PMID: 34398616 PMCID: PMC8391963 DOI: 10.1021/acs.chemrev.1c00022] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/18/2022]
40
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021;121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
41
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021. [PMID: 33211478 DOI: 10.1021/acs.chemrev.1020c00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
42
Westermayr J, Maurer RJ. Physically inspired deep learning of molecular excitations and photoemission spectra. Chem Sci 2021;12:10755-10764. [PMID: 34447563 PMCID: PMC8372319 DOI: 10.1039/d1sc01542g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]  Open
43
Young TA, Johnston-Wood T, Deringer VL, Duarte F. A transferable active-learning strategy for reactive molecular force fields. Chem Sci 2021;12:10944-10955. [PMID: 34476072 PMCID: PMC8372546 DOI: 10.1039/d1sc01825f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]  Open
44
Westermayr J, Gastegger M, Schütt KT, Maurer RJ. Perspective on integrating machine learning into computational chemistry and materials science. J Chem Phys 2021;154:230903. [PMID: 34241249 DOI: 10.1063/5.0047760] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]  Open
45
Dral PO, Ge F, Xue BX, Hou YF, Pinheiro M, Huang J, Barbatti M. MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top Curr Chem (Cham) 2021;379:27. [PMID: 34101036 PMCID: PMC8187220 DOI: 10.1007/s41061-021-00339-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
46
Laurens G, Rabary M, Lam J, Peláez D, Allouche AR. Infrared spectra of neutral polycyclic aromatic hydrocarbons based on machine learning potential energy surface and dipole mapping. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02773-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
47
Gupta A, Chakraborty S, Ramakrishnan R. Revving up 13C NMR shielding predictions across chemical space: benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abe347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
48
Koutsoukos S, Philippi F, Malaret F, Welton T. A review on machine learning algorithms for the ionic liquid chemical space. Chem Sci 2021;12:6820-6843. [PMID: 34123314 PMCID: PMC8153233 DOI: 10.1039/d1sc01000j] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023]  Open
49
Ceriotti M, Clementi C, Anatole von Lilienfeld O. Machine learning meets chemical physics. J Chem Phys 2021;154:160401. [PMID: 33940847 DOI: 10.1063/5.0051418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
50
Nandi A, Qu C, Houston PL, Conte R, Bowman JM. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. J Chem Phys 2021;154:051102. [DOI: 10.1063/5.0038301] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA